
498 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 5, MAY 1995

Optimal Reconfiguration Algorithms for Real-Time
Fault-Tolerant Processor Arrays

Ran Libeskind-Hadas, Member, IEEE, Nimish Shrivastava, Rami G. Melhem, and C. L. Liu, Fellow, IEEE

Abstract--In this paper we consider the problem of reconfigur-
ing processor arrays subject to computational loads that alternate
between two modes. A strict mode is characterized by a heavy
computational load and severe constraints on response time while
a relaxed mode is characterized by a relatively light computational
load and relaxed constraints on response time. In the strict mode,
reconfiguration is performed by a distributed local algorithm in
order to achieve fast recovery from faults. In the relaxed mode, a
global reconfiguration algorithm is used to restore the system to a
state that maximizes the probability that future faults occurring
in subsequent strict modes will be repairable.

Several new results are given for this problem. Efficient re-
configuration algorithms are described for a number of general
classes of architectures. These general algorithms obviate the
need for architecture-specific algorithms for architectures in these
classes. We show that it is unlikely that similar algorithms
can be obtained for related classes of architectures since the
reconflguration problem for these classes is NP-complete. Finally,
a general approximation algorithm is described that can be used
for any architecture. Experimental results are given, suggesting
that our algorithms are very effective.

I. INTRODUCTION
DVANCES in VLSI and WSI technologies allow in- A creasingly larger processor arrays to be fabricated on a

single chip or wafer. As the number of processors in an array
increases, the problem of reconfiguring the array to replace
faults occuning at run-time becomes increasingly important.
One common way of providing fault tolerance in processor
arrays is to augment the array with a set of spare processors
that can replace primary processors that become faulty. This
approach has been proposed for a number of architectures [2],
[lo], [13], [18], [19], [21] and a variety of reconfiguration
algorithms for these reconfigurable systems have been studied.

It has been observed that in many real-time applications,
systems are subject to computational loads that alternate
between a strict mode in which the computational load is
heavy and severe constraints are imposed on response time,
and a reluxed mode in which the computational load is
light and the constraints on response time are relaxed sub-

Manuscript received January 18, 1993; revised May 16, 1994. This work
was supported in part by a GTE graduate fellowship, University of Illinois,
Urbana-Champaign and by the National Science Foundation under Grants MIP
89-06932 and MIP 89-1 1303.

R. Libeskind-Hadas is with the Department of Computer Science, Harvey
Mudd College, Claremont. CA 9171 1 USA.

N. Shrivastava and R. G. Melhem are with the Department of Computer
Science, University of Pittsburgh, PA USA.

C. L. Liu is with the Department of Computer Science, University of
Illinois, Urbana-Champaign, IL 61801 USA.

IEEE Log Number 9409870.

stantially [8], [l l] . In order to achieve fast response time,
it is desirable that reconfiguration in the strict mode be
performed in a distributed fashion so as not to incur the
overhead of communication with a central host processor.
Moreover, in order to minimize interruption in service in the
strict mode, it is important that the replacement of a faulty
processor causes only a minimal number of changes to the
existing system interconnections. Therefore, during strict mode
reconfiguration, a processor uses only very local knowledge
about its immediate neighbors. These objectives are met by
using a distributed local algorithm in the strict mode in which
a faulty processor finds a replacement by selecting an available
spare processor to which it is directly connected [113.

Although local reconfiguration allows fast replacement of
faulty processors, repeated application of the local reconfig-
uration algorithm may quickly degrade the reliability of the
system since spare elements are often not used in the most
effective way. Consequently, in the relaxed mode we wish to
use a global reconfiguration algorithm to restore the system
to a more reliable state. Specifically, the goal of reconfig-
uration in the relaxed mode is to assign faulty elements to
spare elements maximizing the probability that any processor
becoming faulty in the next strict mode will be repairable
by the local reconfiguration algorithm. Such an assignment
is called an optimal assignment. This approach of using both
local and global reconfiguration algorithms, depending on the
state of the system, is called bilevel reconjgurution. It was
shown in [1 I] that bilevel reconfiguration can substantially
improve the expected lifetime of a system and this approach
was illustrated for the case of an augmented mesh architecture.
Subsequently, Chen et al. [3] and Shrivastava and Melhem
[171 independently discovered efficient optimal assignment
algorithms for this particular architecture.

In this paper we investigate the problem of finding optimal
assignments for several broad classes of architectures. In Sec-
tion I1 we give a formal description of the optimal assignment
problem and show that the problem is, in the general case, NP-
complete. In Section Ill we give several basic results that are
used throughout the paper. In Sections IV, V, and VI we show
that optimal assignments can be found in polynomial time for
several classes of architectures, including a number of well-
known architectures that have been proposed in the literature.
Moreover, in Section VI1 we give an efficient approximation
algorithm that can be used for any architecture. Experimental
results are given at the end of each of Sections IV, V, VI,
and VI1 to illustrate the effectiveness of these algorithms.
Conclusions are given in Section VIII.

1045-9219/95$04.00 0 1995 IEEE

LIBESKIND-HADAS ef al.: ALGORITHMS FOR REAL-TIME FAULT-TOLERANT PROCESSOR ARRAYS 499

X Y

(a) (b) (c)

Fig. 1 .
x4. (c) A safe matching.

(a) A bipartite graph. (b) A matching with one unrepairable vertex,

11. OFTIMAL RECONFIGURATION
In this section we formally define the reconfiguration prob-

lems studied in this paper. We begin by introducing some
notation and definitions that will simplify our discussion.

A processor array can be represented by a bipartite graph
G = (X U Y, E) where X is the set of vertices representing
primary processors and Y is the set of vertices representing
nonfaulty spare processors.' There is an edge {x, y} E E iff
the primary processor corresponding to x E X can be replaced
by the spare processor corresponding to y E Y . The connection
allowing a spare processor to replace a primary processor may
be due to a physical link between the two processors or some
other mechanism such as a crossbar switch [151. The vertices
in X are denoted primary vertices and the vertices in Y are
denoted spare vertices. We let F C X represent the set of
faulty primary processors and let N = X - F represent the
set of nonfaulty primary processors. The vertices in F are
denoted faulty primary vertices or simply faulty vertices and
the vertices in N are denoted nonfaulty primary vertices or
simply nonfaulty vertices.

A matching, M , of F into Y represents an assignment of
faulty primary processors to nonfaulty spare processors. A
vertex x E N is said to be repairable with respect to M if it
is adjacent to an unmatched vertex in Y . Thus, a repairable
vertex corresponds to a nonfaulty primary processor that can
be replaced using the local reconfiguration algorithm. A vertex
5 E N that is adjacent only to matched vertices in Y is said
to be unrepairable since the corresponding primary processor
cannot be replaced by the local reconfiguration algorithm.
Our objective is to find a matching for F such that every
vertex in N is repairable and thus any fault occurring in the
next strict phase will be successfully replaced by the local
reconfiguration algorithm. Such a matching is called a safe
matching. Fig. 1 illustrates a matching and a safe matching in
a bipartite graph with three faulty vertices. (Throughout this
paper we will use the convention that primary vertices are
denoted by empty squares, faulty primary vertices are denoted
by darkened squares, and spare processors are denoted by
empty circles.)

For some patterns of faults, a safe matching may not
exist. In this case, we wish to find a matching for F such
that the number of repairable vertices in N is maximized,
thus maximizing the probability that a fault occumng in the

' Faulty spare processors may be disregarded since they cannot be used to
replace primary processors.

next strict phase will be successfully replaced by the local
reconfiguration algorithm. Such a matching corresponds to
an optimal assignment and is therefore called an optimul
matching. In order to formally study the complexity of these
problems, we define the decision problems corresponding to
optimal and safe matchings as follows.

1) Safe Matching Decision Problem (SMDP):
INSTANCE: Bipartite graph G = (X U Y, E) and F C X.
QUESTION: Does there exist a matching M of F into Y
such that all vertices in N = X - F are repairable with
respect to M?
2) Optimal Matching Decision Problem (OMDP)
INSTANCE: Bipartite graph G = (X U Y, E) , F C: X , and
positive integer K .
QUESTION: Does there exist a matching M of F into Y
such that at least K vertices in N = X - F are unrepairable
with respect to M?
Note that since the safe matching problem is a special case

of the optimal matching problem, a polynomial time algorithm
for the optimal matching problem implies a polynomial time
algorithm for the safe matching problem.

Theorem I : SMDP is NP-complete.
Pro08 SMDP is clearly in NP since we can guess a

matching for F and verify in polynomial time that all vertices
in N are repairable with respect to this matching. To show
that SMDP is NP-complete, we reduce the NP-complete 3-
Satisfiability Problem (3SAT) to this problem. 3SAT is defined
as follows [6]. Given a set U of variables and a collection C
of clauses over U such that each clause c E C has (CI = 3,
is there a truth assignment for U that simultaneously satisfies
all of the clauses in C?

We transform a given instance of 3SAT to an instance of
SMDP as follows. For each variable U E U there is a vertex
xu E F , vertices Y ~ , T , Y ~ , F E Y and edges { ~ , , Y ~ , T } ,
{ z u , y u , ~ } E E. For each clause c E C, where c contains
literals s, t, and T , there is a vertex x, E N . Let v denote
the variable for literal s. If s is the unnegated variable w then
there is an edge { x c , y V , ~ } E E and if s is l v then there is
an edge {zc, y V , ~ } E E. Similarly, a single edge is added for
each literal t and T .

We claim that there is a truth assignment that satisfies all of
the clauses in C iff there is a safe matching in the constructed
graph. Assume that there is a truth assignment that satisfies
all of the clauses in C. Let s,, t,, and T, denote the literals in
clause c,. For each variable U E U we include edge {xu, y y u , ~ }
in matching M if U is true in the assignment and include the
edge {x,,yu,~} if U is false. This construction results in a
matching for F. Moreover, for each c, E C, the vertex xc, E
N is repairable with respect to M . To see this, observe that
since c, is satisfied by the truth assignment, at least one of the
literals s,, t,, or T , is true. Without loss of generality, assume
s, is true and let v denote the variable for s,. Ifs, is w then w is
true, {xu, y V , ~ } E M by construction of M , and thus y V , ~ is
unmatched. Since xct is adjacent to y V , ~ by construction, E,, is
repairable. Similarly, if s, is l w then v is false, {x,,y,,,~} E
M , by construction of M , and thus y V , ~ is unmatched. In this
case, x,, is adjacent to Y,,,T and zc, is repairable.

500 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 5, MAY 1995

Conversely, assume that there exists a matching M for F
such that all vertices in N are repairable. For each variable
U E U, if 5 , is matched to y U , ~ then set U = true and,
otherwise, set U = false. Since zc, is repairable, at least one
of the three adjacent vertices is unmatched. If xcz is adjacent to
unmatched vertex y V ; ~ then variable ti was set to false and,
by construction, ci contains the literal l v and is therefore
satisfied. Similarly, if xcz is adjacent to unmatched vertex
y U , ~ then variable v was set to true and, by construction, ci
contains the literal ti and is therefore also satisfied. Therefore,

0
Corollary I: OMDP is NP-complete.
Although Theorem 1 and its corollary tell us that the safe

matching and optimal matching problems are NP-complete in
general, some architectures have properties that allow us to
find efficient algorithms for these problems. In Section IV we
show that the optimal matching problem (and therefore the
safe matching problem) can be solved in linear time for acyclic
graphs.* This implies that optimal assignments can be found
in a number of tree architectures [7], [18], [I91 and interstitial
redundancy schemes [19]. This algorithm can also be applied
to any architecture to find an optimal solution when the fault
pattern in the array induces an acyclic graph.

A primary processor can generally be connected to only a
small fixed number of spare processors, and similarly, a spare
processor can often only be connected to a small number
of primary processors. This is due to the fixed number of
ports on a processor and, in VLSI implementations, layout
considerations that tightly restrict the number of neighbors to
which a processor may be connected. We show that for certain
bounds on processor degrees, safe matchings and optimal
matchings can be found by efficient algorithms.

In Section V we consider architectures in which the primary
processors have constant degree. We show that when each
primary processor is adjacent to at most two spares, safe
matchings can be found in polynomial time. This implies that
safe matchings can be found for a number of well-known ar-
chitectures. For example, this result applies to the fault tolerant
binary tree architecture proposed by Hassan and Agarwal [7]
and Raghavendra et al. [141, the interstitial redundancy scheme
used in the Hughes 3-D Computer [21], and the 2-D augmented
mesh proposed in [1 I] , among others. We also show that this
result is tight in the sense that the safe matching problem is
NP-complete when each processor is adjacent to at most three
spares. Moreover, the optimal matching problem remains NP-
complete even if each processor is adjacent to at most two
spares. However, we show that for arrays that satisfy some
additional properties, the optimal matching problem can be
solved efficiently even if each processor is adjacent to two or
more spares.

In Section VI we consider architectures in which the spare
processors have constant degree. We show that when each
spare processor is adjacent to at most two primary processors,
optimal matchings (and therefore safe matchings) can be found
in linear time. This result implies that optimal assignments can

all clauses in C are satisfied by this assignment.

'Recall that this means that the bipartite graph is acyclic. That is. there is
no cycle in the processor array that altemates between primary processors and
spare processors. The processor array may, however, contain other cycles.

x4 d
A5 U

Fig. 2. The regions corresponding to the bipartite graph in Fig. l(a).

be found efficiently in a number of well-known architectures,
such as the fault tolerant augmented hypercube proposed by
Banerjee [I] and a number of interstitial array schemes [19].
However, the problem of finding even safe matchings becomes
NP-complete when each spare is adjacent to at most 3 primary
processors.

In Section VI1 we show how the NP-complete cases can
be handled effectively. We give an efficient approximation
algorithm that finds solutions that are within a constant factor
of optimal for any architecture.

111. DEFINITIONS AND LEMMAS

In this section we introduce notation and state and prove
several key lemmas that will be used throughout this paper.

Let G = (X U Y, E) be a bipartite graph and let F C X be
the set of faulty vertices. A subgraph of G induced by a single
spare vertex and all its adjacent primary vertices is called a
1-fault-tolerant set (or 1-FT set). Observe that if a 1-FT set
contains no faulty vertices then all of the primary vertices in
this 1 -FT set will be repairable with respect to any matching of
F into Y. Consequently, all the vertices and incident edges in
such a I-FT set can be removed from G. Similarly, if a faulty
primary vertex z is in only one I-FT set, then z must be
replaced by the unique spare y in that 1-FT set. Consequently,
vertices z and y and all incident edges may be removed from
G. A graph G containing a 1-FT set with no faulty vertices,
or a faulty primary vertex in only one 1-FT set, is said to be
reducible and is said to be irreducible otherwise. Without loss
of generality, in the remainder of this paper we assume that
all graphs under consideration are irreducible.

Let S denote the set of all 1-FT sets in G. (By the
irreducibility assumption, each of these 1-FT sets contains at
least one faulty primary vertex). Let T be a binary relation on
S defined as follows. For s,. sJ E S, (s,, s J) E T iff s, and
sJ contain a common faulty primary vertex. Since T is both
reflexive and symmetric, the transitive closure of T, denoted
T', is an equivalence relation of S. Each equivalence class of
T' is a collection of 1-FT sets. The subgraph of G induced by
the 1-FT sets in an equivalence class of T' is called a region
of G. Fig. 2 shows an example of regions for the bipartite
graph in Fig. l(a). The following lemma characterizes four
important properties of regions.

Lemma 1: Let G = (X U Y. E) be a bipartite graph and let
F C X be the set of faulty vertices.

1) Each region is a connected graph.
2) Each region remans connected upon removal of non-

faulty vertices and their incident edges.

LIBESKIND-HADAS et al.: ALGORITHMS FOR REAL-TIME FAULT-TOLERANT PROCESSOR ARRAYS 50 I

3) Every faulty vertex is in exactly one region.
4) A faulty vertex in region R is not adjacent to any spare

Proof: Follows immediately from the definition of

We now give three properties of bipartite graphs that are
exploited in several of the algorithms presented in subsequent
sections. Let H = (A U B , E) be a bipartite graph3 and let
S C A U B. We define D (S) to be the maximum degree
among all vertices in S.

Lemma 2: Let H = (A U B , E) be a connected bipartite
graph.

1) If D (A) 5 2 then IAl 2 (Bl - 1.
2) If H is acyclic and every vertex in A has degree exactly

- k where

vertex that is not in region R.

regions. 0

2 then IAl = JBI - 1.
Proof: Let P = [I? [and assume that IAl =

k 2 2. Since H is connected, it has at least

[+ (a - k) - 1 =2P - k - 1

edges. Therefore, there exists a vertex in A with degree at least

2c - IC - 1 2(! - k) + k - 1 > 2. - -
8 - k l - k

However, this contradicts our assumption that D (A) 5 2 .
Next, assume that H is acyclic and every vertex in A has

degree exactly 2. If IBl 5 IAl then there are IAl + IBI - 1 5
21AI - 1 edges in the tree, contradicting the assumption that
every vertex in A has degree exactly 2. If IBI > IAl + 1
then there are IAl + IBI - 1 > 21A/ edges in the graph, again
contradicting the assumption that every vertex in A has degree

Lemma 3: Let H = (11 U B , E) be a connected bipartite
graph. If D (A) 5 2 and IAl = IBI then there exists a perfect
matching of A into B and this matching can be found in
linear time.

Proof: Let T be a spanning tree of H . Tree T can be
found in linear time using breadth-first search. We prove the
stronger results that there exists a perfect matching in 1 from
A to B. We show that there exists a perfect matching in T
by induction on n = [Al. For n = 1 there is clearly a perfect
matching. Assume that the assertion is true for n = k - 1 and
consider R = k. There are 2k vertices and thus 2k - 1 edges
in T . Therefore, there exists some vertex b E B with degree
1. Vertex b is matched to its neighbor a. Since the degree
of a is at most 2 , tree T remains connected when a and b
and all incident edges are removed from the graph. By the
induction hypothesis, this subtree has a perfect matching. This
matching, augmented with edge { a , b} comprises a perfect
matching for T and thus for H . This argument indicates that
a perfect matching can be found in linear time by repeatedly
selecting a spare vertex of degree 1 and matching it to its

exactly 2. 0

neighbor. 0

3We denote the graph in this way to distinguish it from the graph G =
(X U Y, E) which we reserve to represent a processor array.

Lemma 4: Let H = (A U B , E) be a connected bipartite
graph. If H is acyclic and every vertex in A has degree exactly
2, then for every b E B there exists a perfect matching of A
into B - { b } and this matching can be found in linear time.

Proof: By Lemma 2, IBI = IAl+ 1. Let b be an arbitrary
vertex in B and let Cl,. . . , CI, be the connected components
induced by the removal of b from H . Let A; and B; denote
the subsets of A and B, respectively, in Ci, 1 5 i 5 k .
We claim that lAil = (Bill 1 5 i 5 k . Assume otherwise.
Then lAjl # IBj(for some j , 1 5 j 5 k. By construction
of the components, exactly one vertex in Ai has degree 1 and
all remaining vertices in Ai have degree 2, for all 1 5 i 5 I C .
Thus, C; has exactly 2(Aj I - 1 edges, 1 5 i 5 k , and therefore
C, has exactly 21Ajl - 1 edges. If lAjl > 1Bj1 then Cj has at
most 21AjJ - 1 vertices and, since Cj is acyclic, it has at most
21Aj I - 2 edges, a contradiction. Similarly, if IAj I < IBj I then
Cj has at least 21Aj I + 1 vertices and thus at least 21Ajl edges,
again a contradiction. Therefore, [Ail = for 1 5 i 5 k ,
and by Lemma 3 a matching in Ci can be found in linear time.
Consequently, a perfect matching can be found in H in linear
time. 0

IV. ACYCLIC GRAPHS

In this section we describe a linear time algorithm to find
optimal matchings in acyclic bipartite graphs. Experimental
results for this algorithm are given in Section IV-B.

A. The Optimal Matching Algorithm

Let G be an acyclic bipartite graph and let the root r of
G be an arbitrary nonfaulty primary vertex. (If all primary
vertices are faulty then any matching from F to Y is an optimal
matching and matchings in acyclic graphs can be found in
linear time by well-known algorithms [16].) Without loss of
generality, we assume that G is irreducible and connected, and
therefore a tree. (If G is not connected then each connected
component can be treated individually.)

An example of an architecture with an acyclic bipartite
graph is shown in Fig. 3(a). This is the fault tolerant modular
binary tree architecture proposed by Hassan and Agarwal [7].
The corresponding irreducible bipartite graph G is shown
in Fig. 3(b).4 The vertex 2 1 has been arbitrarily selected as
the root of G. Note that the I - F l - set induced by 7& and
its neighbors contains no nonfaulty vertices and therefore
these vertices and their incident edges do not appear in the
irreducible graph G.

Since a region is a connected subgraph of G, it is also a
tree. The root of region R is denoted by p (R) . For example,
the two regions R1 and R2 for the graph G in Fig. 3(b) are
shown in Fig. 3(c). The roots of these regions are z1 and z2,
respectively. The following lemma states two basic properties
of regions in trees.

LRmma 5: Let R be a region in tree G.
1) p(R) is a nonfaulty primary vertex.
2) p(R) has exactly one child in R.

4Note that although D (X) = 2 in this example, the algorithm presented
here applies to acyclic graphs with arbitrary vertex degrees.

502 IEEE TRANSACTIONS ON PARALLEL AND DISTFUBLTED SYSTEMS, VOL. 6, NO. 5, MAY 1995

fi
X8 x9 *IO XI1

(C)

Fig. 3.
graph. (c) The two regions.

(a) A fault tolerant modular binary tree. (b) The reduced bipartite

Proof: First, assume that p(R) is a spare vertex. By the
definition of regions, every neighbor of a spare vertex is in
R. In particular, the parent of p(R) is in R, a contradiction.
Next, assume that p (R) is faulty. By the definition of regions,
every spare vertex adjacent to a faulty vertex is in the same
region as the faulty vertex. In particular, the parent of p(R) is
also in R, and thus p(R) is not the root of R, a contradiction.
Finally, assume that p (R) has two children, y1 and y2. Since
G is a tree, p(R) is the only common neighbor of spares y1

and y2. Since p(R) is nonfaulty, y1 and yp cannot belong to

The optimal matching algorithm considers regions in a
“bottom-up” fashion. To this end, we define the notion of one
region being above or below another region. Formally, let R
denote the set of regions of G and let 3~ be a binary relation
on R defined as follows. For Ri,Rj E R, Ri -+ Rj iff
Ri = Rj or the path from T , the root of G, to p(R;) passes
through some vertex of Rj other than p(Rj). If R; +R Rj
then Ri is said to be below Rj and Rj is said to be above
Ri. For example, in Fig. 3(c), region R1 is above region R2
because the path from z1 to p(R2) = x2 passes through vertex
yl. The relation 5~ is easily verified to be a partial ordering
relation on R.

Let R E R be any minimal element of the partial order.
That is, there exists no region that is below R. Such a region
is called a minimal region. Each spare vertex y in R is assigned
an ordered pair cost defined by cost(y) = (a , b) where a is
the number of nonfaulty primary vertices adjacent to y but not
adjacent to any other spare vertices in G, and b is the number
of nonfaulty primary vertices adjacent to y and adjacent to at
least one other spare vertex in G. Intuitively, the cost of vertex
y tells us that if vertex y is matched to a faulty vertex then a
nonfaulty vertices in G will certainly become unrepairable and
b additional vertices in G may become unrepairable, depending
on the status of the other spare vertices. For example, in
Fig. 3, R2 is a minimal region. In R2, cost(y2) = (0, I),
cost(y4) = (2:0), and cost(y5) = (2,O).

Let cost(y;) = (a i ,b i) . We note that if the property bi = 0
holds for every spare vertex yi, then the number of unre-
pairable vertices with respect to a given matching is simply
C,,,s ai where S denotes the set of matched spare vertices.
Unfortunately, this property is generally not satisfied. How-
ever, the following lemma suggests that in a minimal region,
this property is “almost” satisfied.

Lemma 6: Let R be a minimal region and let s be the
unique child of p(R) in R. For each spare processor yi in
R, let cost(yi) = (a i , b i) . If yi # s then b; = 0. If y; = s
then bi = 1 if p (R) contains a neighbor other than s in G and
b; = 0 otherwise.

Proof: If yi # s, then by the definition of regions, the
parent of yi must be faulty. Assume that b; > 0. Then some
nonfaulty child of yi , 5, must have at least one child. Observe
that z cannot have any faulty descendants, since otherwise R
would not be minimal. On the other hand, 5 cannot have only
nonfaulty descendants, since otherwise G is not irreducible,
a contradiction. if yi = s, all nonfaulty children of y; must
again be adjacent to no other spares. Thus, if p (R) is adjacent
to a spare vertex other than s: bi = 1 and b; = 0 otherwise. 0

We define addition on costs by (a 1 , b l) + (a p , b z) = (a1 +
ap, bl+bz). We let 511ex be the lexicographic ordering on costs.
That is, (a 1 , b l) 51ex (a2 ,bz) iff a1 < a2 or a1 = a2 and
bl 5 b p . Let MR be a matching of all faulty primary vertices
in R to spare vertices in R. The cost of M R is defined to be
(a l , b l)++. . .+(an ,bn) whereyl, ...,yn arethesparevertices
matched in MR and (a;, b i) is the cost of spare vertex yi .
Observe that 51ex is a total ordering on the costs of matchings.
Thus, a minimum cost matching in region R is a matching of

the same region. 0

LIBESKIND-HADAS et al.: ALGORITHMS FOR REAL-TIME FAULT-TOLERANT PROCESSOR ARRAYS 503

Input: Acyclic bipartite graph G = (X U Y, E) and set F.
Output: Optimal matching for F in G.

begin
Mopt = 0.
Find all regions using breadth-first search.
Use topological sort to order the regions.
while regions remain do

Select a minimum region R.
Compute costs for each spare vertex in R.
Find a minimum cost matching M in R.
Mopt = Mopt U M .
Remove R from G.

endwhile
return(Mopt).

end
Fig. 4. Optimal matching algorithm for acyclic graphs.

all faulty primary vertices to spare vertices in R of minimum
cost with respect to 51ex.

The optimal matching algorithm is based on the following
property of minimum cost matchings: Any minimum cost
matching in a minimal region of a tree is a subset of an optimal
matching. This property implies that an optimal matching may
be constructed by repeatedly selecting a minimal region and
finding a minimum cost matching in the region, until all faulty
primary vertices have been matched to spare vertices.

Theorem 2: Let R be a minimal region in tree G and let
M R , ~ ~ ~ be any minimum cost matching in R. The matching
M R , ~ ~ ~ is a subset of an optimal matching for G.

Proof: Let M be an optimal matching for G and let MR
be the subset of M restricted to R. Let (a l , PI) and (a2, P 2)

be the costs of M R and M R , ~ ~ ~ , respectively. Let U denote
the number of unrepairable vertices outside of R with respect
to M. Let M’ be the matching obtained from M by replacing
the edges in MR by the edges in M R , ~ ~ , , . We claim that the
number of unrepairable vertices with respect to M’ is no larger
than the number of unrepairable vertices with respect to M.
Assume that p(R) is adjacent to un unmatched spare with
respect to M outside of R. Then p(R) is repairable with
respect to both M and M‘. From Lemma 6, it follows that
the number of unrepairable vertices with respect to M and
M‘ is U + a1 and U + L Y ~ , respectively. Since a2 5 a1, we
conclude that M’ is an optimal matching. Next, assume that
p(R) is adjacent to at least one spare vertex outside R but
all such spares are matched with respect to M. Then p(R)
is repairable only if its child in R is unmatched. Thus, the
number of unrepairable vertices in M and M‘ is U + a1 +
and U + a2 + Pz, respectively. By Lemma 6, 0 5 PI, ,& 5 1,
and thus a2 + /32 5 a1 + PI. We again conclude that M’ is an
optimal matching. Finally, assume that p (R) has degree 1 in
G. It follows from Lemma 6, that there are U + a1 and U + a2

unrepairable vertices with respect to M and M’, respectively.
0

Theorem 2 suggests the following algorithm for finding
optimal matchings in acyclic graphs. First, all the regions in the
graph are found using breadth-first search. A minimal region
is then selected, the costs of spare vertices in the region are
determined, and a minimum cost matching is found in this

Since a2 5 al, M’ is an optimal matching.

region. This step is repeated until no more regions remain.
The algorithm is summarized in Fig. 4.

We now show that a minimum cost matching in a minimal
region can be found by an efficient algorithm. By the irre-
ducibility assumption, every faulty vertex x in minimal region
R has at least one child. Moreover, by Lemma 5, p(R) is
nonfaulty and thus every faulty vertex in R has a parent in R.
The following theorem is the basis for finding minimum cost
matchings in minimal regions in linear time.

Theorem3: Let x be a faulty primary vertex in R in
which all faulty descendants of x have exactly one child. Let
y1, y2, . . . , yk denote the children of x and let ci denote the
maximum cost among yi and all of its descendants where
ci 51ex ci+l, for 1 5 i 5 C - 1. If there exists a matching in
R then there exists a minimum cost matching in R in which
x is not matched to any of y2,. . . , Yk.

Proof: Assume that in every minimum cost matching
in R, x is matched to one of yz,. . . ,yk. Since each faulty
descendant of yi has exactly one child and one parent, by
Lemma 2 the subtree of R rooted at yi, for each 1 5 i 5 k,
has one more spare vertex than faulty primary vertices. Let
M R , ~ ~ , , be a minimum cost matching for R in which z is
matched to yj, for some 2 5 j 5 I C . From the observation
above, every spare vertex in the subtree rooted at yj is matched
in M R , ~ ~ ~ . Let y’ denote the spare vertex in subtree rooted
at y j with cost cj. Since x is not matched to y1, there is
one unused spare vertex, y”, in the subtree rooted at yl.
Let c” denote the cost of y”. Let P denote the unique path
in R from y’ to y”. Since P is an alternating path, a new
matching M R , , , ~ ~ is obtained by making each matched edge
in P unmatched and making each unmatched edge a matched
edge. Since y’’ is in the subtree rooted at y1, vertex 2 is
matched to y1 in M R , ~ ~ ~ . Moreover, the cost of M R , ~ ~ ~ is
no larger than the cost of M R , ~ ~ , , since c” -(lex c1 -(lex cj,
contradicting the assumption that no minimum cost matching

0
Let x be a faulty primary vertex in R in which all faulty

descendants have one child. Such a vertex always exists, since
any faulty vertex in R with no faulty descendants has this
property. Let y1, . . . , yk be the children of x as in Theorem
3. Let Ti denote the subtree rooted at yi and let T denote
the subtree obtained by removing subtrees T2, . . . , T k from
R. Each faulty primary vertex in T2,. . . ,Tk has degree 2.
By Theorem 3, if a matching in R exists then a minimum
cost matching can be obtained as the union of minimum cost
matchings in T and Tz, . . . , T k . This partitioning can now be
applied to T and repeated until the faulty vertices in each
subtree have degree 2.

Lemma 4 tells us that in each subtree constructed above, a
perfect matching is induced by the removal of any single spare
vertex. Therefore, a minimum cost matching in a subtree is
obtained by removing the vertex with maximum cost.

We now illustrate the execution of this algorithm for the
faulty tree of Fig. 3(a). First, regions R1 and R2 shown in
Fig. 3(c) are found. Region R2 is minimal. Each faulty vertex
in R2 has degree 2. Therefore, a spare vertex in R2 with
maximum cost is selected from R2 to remain unmatched.
Either y4 or y5 may be selected. Assume that y4 is selected.

in R matches x to y1.

504 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6. NO. 5, MAY 1995

30 -
20 -
10 -
0

Then x4 is matched to y 2 and x5 is matched to y5. Next, region
R1 is considered. Again, each faulty vertex already has degree
2. Therefore, a spare vertex of maximum cost is selected to
remain unmatched. Either yl or y7 may be selected. If ?jl is
selected, 23 is matched to y 3 and :1;7 is matched to y7. This
optimal matching leaves four vertices unrepairable. In contrast.
the worst possible matching for this faulty tree leaves seven
vertices unrepairable.

Finally, the time complexity of the algorithm is linear in the
number of vertices in the tree. To see this, note that the regions
can be found in linear time by breadth-first search. Minimal
regions can be identified in constant time by maintaining a
topological ordering of the regions (which is precomputed in
linear time). Finally, a minimum cost matching can be found in
each minimal region by partitioning the region into subtrees
in linear time and finding minimum cost matchings in each
subtree, which again requires only linear time.

o Standard assignment

I I I I I

B. Experimental Results

The optimal matching algorithm for acyclic graphs was
compared to the standard matching algorithm for acyclic
graphs [16] on fault tolerant modular binary trees with 64
primary processors and 32 spare processors.' Both algorithms
run in linear time. However, the optimal algorithm found
assignments with substantially fewer unrepairable processors
than those found by the standard matching algorithm. In
our experiment, trees were generated with faulty elements
introduced at random according to a uniform distribution. The
fault frequency ranged from 0% to 30% in increments of
5%. (At fault frequency 35% there were already fewer spare
processors than faulty processors, and thus no assignments
could be found.) For each fault frequency, 100 faulty trees
were generated. When the fault frequency was 15%, the
optimal algorithm found assignments in which an average
of over 96% of the nonfaulty processors were repairable. In
contrast, the standard matching algorithm found assignments
in which only 88% of the nonfaulty processors were repairable
on average. When the fault frequency increased to 3096,
the results were even more striking: The optimal algorithm
left nearly 80% of the nonfaulty processors repairable while
the standard matching algorithm left fewer than 43% of the
nonfaulty processors repairable on average. The results are
summarized in Fig. 5.

v. DEGREE BOUNDS ON PRIMARY PROCESSORS

In this section we characterize the complexity and give
algorithms for the safe and optimal matching problems when
the primary processors have a bounded number of adjacent
spares. Recall that D (X) represent the maximum degree
among all vertices in X , that is, D (X) is the maximum
number of spare processors that are connected to a primary
processor. In Section V-A we show that the safe matching
problem can be solved in polynomial time when D (X) 5 2.
Moreover, the safe matching problem becomes NP-complete
when D (X) = 3. We also show that the optimal matching

'All simulations described in this paper were implemented in C and C++
on a Sun SparcStation and an Encore Multimax computer.

problem remains NP-complete even when D (X) 5 2 . How-
ever, some architectures have additional properties which may
be exploited to solve the optimal matching problem efficiently.
As an example, in Section V-B we give a linear time algo-
rithm for finding optimal assignments in the augmented mesh
architecture proposed in [1 I]. Experimental results are given
in Section V-C.

A. Algorithms and Complexity

We begin by showing that the safe matching problem can be
solved by an efficient algorithm when D(X) 5 2. Clearly, for
some patterns of faults there exists an optimal matching but no
safe matching. However, experimental results given in Section
V-C suggest that when the number of faulty processors is not
too large, most optimal matchings are in fact safe matchings
and thus our algorithm can be used. Moreover, in systems in
which high reliability is of the greatest concern, we may insist
on matchings to be safe.

We transform the safe matching problem to the 2-
satisfiability problem (2SAT) which can be solved in
polynomial time by any of several algorithms [4], [5] . 2SAT is
defined as follows. Given a set U of variables and a collection
G of clauses over U such that each clause c E C has I C [= 2,
is there a truth assignment for U that satisfies all of the
clauses in C?

For every edge {xZ, y j } E E where xi E F , we introduce
the boolean variable ui,j. For every edge {xi, yJ} E E where
5; E N , we introduce the boolean variable u;,~. We let
ui,j = true represent the situation in which {xi, y j } is in the
matching and u i , j = false represent the situation in which
{z;, g j } is not in the matching. Similarly, we let 71i.j = true
represent the situation in which vertex z; E N is repairable
by vertex y j and = false represent the situation in which
xi is not repairable by vertex y j . The set C is obtained from
the following construction.

Construction I :
T I . (ui, j V u i , k) for each vertex xi E F adjacent to vertices
~j and Y k .

T2. (l u ; , j V 7 u i . k) for each vertex xi E F adjacent to
vertices yj and y/k.

LIBESKIND-HADAS et al.: ALGORITHMS FOR REAL-TIME FAULT-TOLERANT PROCESSOR ARRAYS 505

T3. ('ui,j v - m h , j) for each pair of vertices x i ,xh E F
adjacent to a common vertex yj.

T4. (v , , ~ V u, ,k) for each vertex :c, E N adjacent to vertices
Y J and Yk.

T5. (~ w i , ~ v l u h , j) for every vertex z; E N and vertex
zfL E F adjacent to a common vertex yj.
Since there are only a polynomial number of variables,

only a polynomial number of clauses are introduced by this
construction.

Theorem 4: The instance of 2SAT from Construction 1 is
satisfiable iff there exists a matching for F in which all vertices
in N are repairable.

Proof: Consider a satisfying assignment for the set of
clauses. For each vertex zj E F , we include {xj,yj} in
matching A4 if u i ; j = true. Each vertex xi E F is matched to
at least one vertex in Y since the clauses in 7'1 are satisfied.
Moreover, each vertex x ; E F is not matched to two vertices
in I- since the clauses in 7'2 are satisfied. A vertex y j E Y is
matched to at most one vertex in F since the clauses in 1'3 are
satisfied. Therefore, each vertex in F is matched to a unique
vertex in Y . Each vertex ri E N is repairable by a vertex in
Y since the clauses in T4 are satisfied and a vertex in N is
not repairable by a vertex in Y that is matched to a vertex in
F since the clauses in T5 are satisfied.

Conversely, assume that matching M for F has IN1 re-
pairable vertices. For each variable u i , j , assign I L ; , ~ = true
if vertex xi E F is matched to y j and assign u;,j = false
otherwise. Similarly, for each variable assign v;,j = true
if vertex xi E N is repairable by vertex y j and assign
u;,j = false otherwise. Each clause in T1 is satisfied since
every vertex in F is matched. Each clause in 1'2 is satisfied
since a vertex in F cannot be matched to two vertices in Y .
Each clause in T3 is satisfied since a vertex in Y is matched
to a single vertex in F . Each clause in 7'4 is satisfied since
each vertex in N is repairable. Finally, each clause in T5 is
satisfied since a vertex in W is only repairable by a vertex

0
The algorithm is summarized in Fig. 6.
This result is tight in the sense that the safe matching

problem becomes NP-complete when D(X) = 3. This follows
from the observation that in the proof of Theorem 1 every
vertex in X has degree at most 3. Therefore, we have the
following corollary to Theorem I.

Corollav 2: SMDP is NP-complete even if D (X) = 3.
Finally, we observe that the result of Theorem 2 cannot be

Theorem 5: OMDP is NP-complete even if D (X) 5 2 .
Proof: The proof is similar to the proof of Theorem

1 except that the reduction is now from the Maximum 2-
Satisfiability Problem (MAX 2SAT). MAX 2SAT is defined
as follows 161. Given a set 11 of variables, a collection C of
clauses over U such that each clause c E C has I C (= 2, and
a positive integer K 5 IC[, is there a truth assignment for
U that simultaneously satisfied at least K of the clauses in
C?

y E Y if y is unmatched.

extended to optimal matchings.

Input: Bipartite graph G = (XU Y, E) and set F where D (X) 5 2.
Output: Safe matching for F in G.

begin
Construct an instance of 2SAT as in Construction 1 .
Determine a satisfying assignment for the 2SAT instance, if one exists,

if 2SAT instance unsatisfiable halt
for each boolean variable U,,, with value true do

endfor

using a linear-time algorithm [12].

Match 5, to y,;

end
Fig. 6. Safe matching algorithm for D(K) 5 2.

The reduction from the MAX 2SAT instance to an instance
of OMDP proceeds as in the proof of Theorem 1 except that
now each clause c E C contains only two literals and thus
corresponds to a vertex x, in N adjacent to only two vertices
in Y .

We claim that there is a truth assignment that satisfies at
least K of the clauses in C iff there is a matching for F
with at least K repairable vertices. The proof of this claim is

0 analogous to the proof of Theorem 1.

B. Augmented Mesh

Although we have shown that OMDP is NP-complete for
D (X) 5 2, some architectures have topological properties that
can be exploited to find efficient algorithms for OMDP. In this
section we give an example of an augmented mesh architecture
in which D (X) = 2 and show how OMDP can be solved in
linear time for this architecture.

An augmented mesh is a v? x & grid of primary vertices
such that each row of primary vertices shares a common
spare vertex and each column of primary vertices shares
a common spare vertex. The & spare vertices for rows
and columns are called spare row vertices and spare column
vertices, respectively. For example, a 4 x 4 augmented mesh
with 6 faulty primary processors is shown in Fig. 7(a).

The optimal reconfiguration problem for augmented meshes
was proposed in [l 11. In [3] an O(t) algorithm for OMDP was
given for this architecture. In this section we describe a much
simpler O (a) algorithm.

x & augmented mesh where
X denotes the set of primary vertices, Y denotes the set of
spare vertices. and E denotes the set of edges between primary
vertices and spare vertices. The set Y of spare processors is
partitioned into two sets, SR and SC, denoting the spare row
vertices and spare column vertices, respectively.

Let R I , . . . , RI, denote the regions in G. For example, the
graph in Fig. 7(a) has two regions, one of which, RI , is shown
in Fig. 7(b). For each region, R;, let X ; denote the set of
primary vertices in Ri and let Y, denote the set of spare
vertices in R;. In addition, let Fi C X i denote the set of
faulty primary vertices in Ri and let SR;, SC; C Yi denote
the set of spare row vertices and spare column vertices in
R;, respectively. By Lemma 1, R; remains connected when
all nonfaulty vertices are removed from Ri, leaving only the
vertices in F, and Y,. Since each vertex in Fi has degree
exactly 2 by the irreducibility assumption, from Lemma 2
it follows that lFil > 1x1 - 1. In other words, each region

Let G = (X U Y, E) be a

506 IEEE TRANSAC

sc

(b)

Fig. 7. (a) A 4 x 4 augmented mesh. (b) A region.

contains at most one more spare vertex than faulty vertex. If
lF;l > 1x1 then there are more faulty vertices than spares in
region R; and thus some faulty vertices cannot be replaced. If
lFil = 1x1 then by Lemma 3 there exists a perfect matching
of F; into Y, that can be found in linear time. Therefore, we
must only consider the case that each region has the property
lFil = lY;J- 1. In this case, the graph obtained by removing all
nonfaulty primary vertices from R; contains 214 I + 1 vertices
and 21F;J edges and is therefore a tree. By Lemma 4, a perfect
matching can be found from Fi to Y, - {y} for any y E Y,.
It now only remains to be shown how a spare vertex, y, from
each set yi should be selected to be left unmatched such that
the total number of unrepairable vertices is minimized.

Assume that IF;[= 1x1 - 1 for each region Ri, 1 5 i 5 IC.
Let y be a spare vertex and let n (y) denote the number of
nonfaulty vertices adjacent to y. Let ~i E SRi be a spare
row vertex with the property n(r,) 2 n(y) Vy E SR; and
let e; E SC; be a spare column vertex with the property
n(c;) 2 n(y) Vy E SC;. That is, ~i is the spare row vertex in
region Ri adjacent to the largest number of nonfaulty vertices
and c; is the spare column vertex in region Ri adjacent to the
largest number of nonfaulty vertices. For example, in region
R1 in Fig. 7(b), TI = y7 and c1 = yp. Intuitively, either of
T; or ci are good candidates to remain unmatched since many
nonfaulty vertices are repairable with respect to these vertices.
Indeed, the following lemma suggests that in each region Ri
we may restrict our attention to the vertices T; and e;.

”IONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 5 , MAY 1995

Lemma 7: Let M be a matching in G and let U , denote
the unmatched vertex in R,. If U , E SR, (U , E SC,) then by
replacing U , by T,(c ,) as the unmatched vertex, the number of
unrepairable vertices does not increase.

Proof: Without loss of generality, assume that U , E SR,
and U , # T,. Since U , is a spare row vertex and it is the
only unmatched spare vertex in R,, every spare column vertex
in R, must be matched in M. Let Nu, and NTt denote the
set of nonfaulty neighbors or U , and T,, respectively. Since
n(r,) 2 n(u,), IN,., I 2 INu, I . We partition Nu, into two sets,
Au, and Bu,, such that Au, contains those vertices whose
corresponding spare column vertices are not in R, and those
that are in R,, respectively. Similarly, we partition N,, into
two sets A,* and BT,. Note that /Art I = lAu, I since every
spare column vertex not in R, cannot have a faulty vertex in
common with a spare row vertex in R,. Thus, I 2 I&, I.
Therefore, the net increase in the number of unrepairable
vertices introduced by making U , matched and T , unmatched

U
We must now determine which of the spares T, or cz should

be left unmatched in each region R,. Let d, = n(r,) - n(c,).
Let T be a permutation of { 1,. . . , I C } such that d,(l) 2 d+) 2
. . . 2 d T (k) . That is, T is the permutation that sorts the d,
values in nonincreasing order.
Lemma 8: Among all matchings with exactly .t unmatched

spare row vertices. the matching obtained by leaving vertices
rT(1), . . . , rn(e), C,(e+ l) , . . . , c x (k) unmatched has the least
number of unrepairable vertices.

Proof: Let M be the matching obtained by leaving ver-
tices T , (~) , . . . , T T (e) , c,(e+l), . . . , cT(k) unmatched and let M’
be the matching obtained by leaving vertices T , (~) , . . . , To(e),

c,([+~), . . . , co(k) unmatched, where c is any permutation of
{ 1, . . . , IC}. (By Lemma 7, we may restrict our attention to
such matchings without loss of generality.) The number of
repairable vertices with respect to M is

is /&,I - IB,I 5 0.

e k

i= 1 j = e + i

since each nonfaulty vertex adjacent to both an unmatched
spare row vertex and an unmatched spare column vertex is
counted twice and there are .t x (k - e) such vertices. Similarly,
the number of repairable vertices with respect to M’ is

e k

L = l j=e+i
S M ’ = C n (r u (i)) + n(cu(j)) - e x (IC - e) .

Let c = xF=l n(c;> - t x (IC - e>. Then,

SM - C 2 SM.~’ - C
e

SM 2 S M ~ Cd,(i)
i=l

P

2 &(i)
~

1=1

By the definition of T , d,(;) 2 du(i) , 1 5 i 5 IC. Thus,
SM 2 SMI and thus matching M has the least number
of unrepairable vertices among all matchings with exactly e

0 unmatched spare row vertices.

LIBESKIND-HADAS et al.: ALGORITHMS FOR REAL-TIME FAULT-TOLERANT F ‘ROCESSOR ARRAYS 507

Input: Augmented mesh G = (X U Y, E) and set F
Output: Optimal matching for F in G.

begin
Find regions in G. /* Let k denote number of regions */
For each region, R,, find r,, c,, and d, .
Sort the d, values using a linear time sorting algorithm.
for e = 0 to k do

Compute minimum number of unrepairable vertices in a matching
with exactly e unmatched row vertices.

endfor
Select the value of P minimizing number of unrepairable vertices

and remove the corresponding row and column spares.
Use algorithm of Lemma 3 to find matchings in each region.

Optimal matching algorithm for the augmented mesh.
end

Fig. 8.

An optimal matching can now be obtained by finding
the matching with the least number of unrepairable vertices
for each I , 1 5 1 5 I C , and selecting the matching with
the minimum number of unrepairable vertices among these
matchings.

By employing simple data structures, the time complexity
of this algorithm is seen to be O (d) . Since there are only 2&
spare vertices, if the number of faulty processors exceeds this
amount the algorithm reports that the array is not repairable
and halts. Otherwise, two arrays are created, row and column,
such that the ith element of row contains a pointer to a linked
list of faulty processors in the ith row of the grid and the j th
element of column contains a pointer to a linked list of faulty
processors in the j th column of the grid. Thus, each fault is
inserted once in each array. Since each array has size O(&)
and there are (I (&) elements to be inserted in the arrays,
construction of these arrays takes time O(&). With these data
structures, the regions can easily be found in time O(&) [171.
Sorting the d, values can be performed in time O(&) using a
linear time sorting algorithm since Id,l I: &. For each value
of 1, 0 5 C 5 IC 5 fi, the number of unrepairable vertices
in the best matching with C unmatched spare row vertices can
be computed in constant time. Consequently, the running time
of the algorithm is (I (&) . The algorithm is summarized in
Fig. 8.

Chen er al. [3] conjectured that similar polynomial time
algorithms could be found for OMDP in augmented meshes
of higher dimensions. We have “disproved” this conjecture
by showing that the existence of such an algorithm, even for
three-dimensional meshes, implies that P = NP. The proof
of this theorem is rather involved and the interested reader is
referred to [9].

C. Experimental Results

Although the optimal matching problem is NP-complete
for D (X) 5 2, experimental results indicate that for low to
moderate fault frequencies most optimal assignments are in
fact safe assignments. Therefore, in these cases the polynomial
time safe matching algorithm for D (X) 5 2 can be employed
to find optimal matchings with high probability of success.
For example, in a simulation on 100 randomly generated arrays
with 32 primary processors, 16 spare processors, and D (X) =
2, more than 86% of the optimal assignments found were safe
assignments when at most 10% of the processors were faulty.
(Optimal assignments were obtained by exhaustive search.)

\-

Average
percentage of

repairable
processors

lo 0
0 2 4 6 8 10 12 14 16 18

Percentage of faulty elements
Fig. 9.
mesh.

Optimal, standard, and worst case assignments in the augmented

Next, we consider the optimal matching algorithm for aug-
mented meshes. The algorithm was implemented and tested on
10 x 10 meshes (20 spares) with faulty processors introduced
at random according to a uniform distribution. The fault
frequency ranged from 0% to 18% in increments of 2% and
for each fault frequency 100 meshes were generated. (At fault
frequency of 20%, none of the meshes could be repaired.) The
optimal matching algorithm found solutions with as much as
5 % more repairable processors than those found by standard
matching and as much as 10% more repairable processors than
worst case matchings. Since the optimal matching algorithm
runs in linear time, no additional cost is incurred in obtaining
optimal assignments. The results are summarized in Fig. 9.

VI. DEGREE BOUNDS ON SPARE PROCESSORS

In this section we describe a linear time algorithm for
finding optimal matchings when D (Y) _< 2. We then show
that this result is tight in the sense that the problem remains
NP-complete when D (Y) = 3. In Section VI-B, experimental
results are given for the optimal matching algorithm for
D (Y) 5 2.

A. Algorithms and Complexity

Let G = (X U Y. E) be a bipartite graph with D (Y) 5 2.
Without loss of generality, we assume that G is connected,
since otherwise each connected component can be considered
independently.

Lemma 9: Assume that D (Y) 5 2. If JY I = 1x1 + m, m 2
0, then there exists S c Y such that IS1 = m and the removal
of S from G does not disconnect G. Moreover, the set S can
be found in linear time.

Proof: Let I = 1x1 and let T be a spanning tree in G.
We claim that T has at least m leaves in Y. Assume otherwise.
Then T has m - j leaves in Y , for some j 2 1. There are
2C + m vertices and thus 21 + m - 1 edges in T. Also, there
are (C + m) - (m - j) vertices of degree 2 in Y in tree T.
Thus, there are

2 [(I + m) - (m - j)] + (m - j) = 21 + m + j

508 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 5. MAY 1995

edges in T , a contradiction. Thus, we conclude that there are
at least m leaves in Y in tree T. Any set S of m leaves can
be removed from T , resulting in a subtree T’. The set S can
be found in linear time by constructing a spanning tree and

0
By Lemma 9, if G has at least as many spare vertices as

primary vertices then it can be reduced to a connected graph
with exactly the same number of spare vertices as primary
vertices. Then, by Lemma 3, a perfect matching of primary
vertices to spare vertices can be found in this reduced graph
in linear time. Observe that this matching assigns each faulty
vertex in F to a unique spare vertex in Y and assigns each
nonfaulty vertex in N to a unique spare vertex in Y . Therefore,
this matching is clearly an optimal matching for G.

We now turn our attention to the remaining case in which
IYI < 1x1. By Lemma 2 , /YI = 1x1 - 1. Therefore, G must
be a tree since there are exactly 21x1 - 1 vertices and 21x1 - 2
edges. An optimal matching can be found in G in linear time
using the algorithm presented in Section 111.

Finally, we show that this result is tight in the sense that the
safe matching problem, and consequently the optimal matching
problem, remains NP-complete when D (Y) = 3.

then identifying the first 7n. leaves in the tree.

Theorem 6: SMDP is NP-complete for D (Y) = 3.
Proof: The reduction is again from 3SAT. We transform

an instance of 3SAT, given by a set of variables U and a set
of clauses C, to an instance of OMDP with D (Y) = 3 as
follows. For each variable E U which occurs k times in the
clauses in C, there are:

1) k vertices zu,l , . . . , ~ , , k E F representing the k occur-
rences of variable U.

senting the true and false values for each occurrence
of variable U.

3) k vertices .zU,1,, . . , z u , k E N which are “enforcing”
vertices that are used to ensure that all IC occurrences
of variable U are assigned the same boolean value.

2) 2k vertices Yu,~.T,?Iu,~,F,. . . . Y u , k , T ? Y u , k , F E y repre-

4) 2k edges { ~ u . l ~ ! h . l , T } ~ (Z u . l , Y u , l , F } , . ~ . I { z u , k ?

Y u , k , T) , { z u . k > Y n , k , F } E E.
5) 2k edges { z u . i , : v u , t ~ ~ } for 1 5 5 k , {zu , i7 Y ~ , ~ + I , F)

for 1 5 i 5 k - 1, and {zu,kr Y , , ~ , F } .

In addition, for each clause c E C, where I: contains literals,
s, t , and T , there is a vertex z, E N . Let v denote the variable
for literal .s and assume s represents the ith occurrence of
variable v. If s is the unnegated variable 71 then there is an
edge {zcl y v , i , p } E E and if s is ~v then there is an edge
{zcr y v , i , * } E E. Similarly, edges are added for literals t and
T. Observe that in this construction vertices in Y have degree
at most 3.

We claim that there is a truth assignment that satisfies all
the clauses of C iff there is a matching for F in which all
vertices in N are repairable. We observe that in any matching
for F, M , with no unrepairable vertices, the following property
holds. For each variable U E U , either all edges {xu,il yu , i ,~} ,
1 5 i 5 k , are in M or all edges { ~ ? ~ , i , g u , i , ~ } , 1 5 i 5 k , are
in M , where k is the number of occurrences of U in the clauses
in C. Assume this is not the case. Then there exists a value
Pi 5 P 5 k, such that { Z u , p t Y u , p , T } : { z u , p , ! / u , q , F } E M

Average
percentage of

repairable
processors

100
90
80
70
60
50
40
30

0 Optimal assignment
o Standard assignment ;;I , * ~ ~ c : , a i i ~ ~ 1

0
0 5 10 15 20 25 30 35 40 45

Percentage of faulty elements
Fig. 10.
ring.

Optimal, standard, and worst case assignments in an augmented

where q = p + 1 if p < IC and q = 1 if p = k. However, in
this case vertex z,,* is not repairable, a contradiction. With
this fact established, the remainder of the proof is identical to

U the proof of Theorem 1.

B. Experimental Results

The optimal matching algorithm for D (Y) 5 2 was com-
pared to standard matchings and worst case matchings on
a simple ring of primary processors such that each pair of
neighboring primary processors share a unique spare proces-
sor. In our experiment, rings with 20 primary processors, and
thus 20 spare processors, were generated with faulty elements
introduced at random according to a uniform distribution.
For each fault frequency, 100 rings were generated with
faulty processors introduced at random according to a uniform
distribution. The fault frequency ranged from 0% to 45%. (At
fault frequency 50% the rings could not be repaired.) The
experimental results are summarized in Fig. 10.

VII. AN APPROXIMATION ALGORITHM
Although the optimal matching problem is NP-complete for

arbitrary D (X) and D (Y) , we now describe an approximation
algorithm that can be applied to any architecture and is
guaranteed to be at least &-optimal. In other words, if
the number of repairable vertices in an optimal solution is k
then the approximation algorithm finds a solution in which the
number of repairable vertices is at least -2- . I C . Experimental
results given in Section VII-B suggest that in practice this
algorithm performs substantially better than indicated by this
theoretical lower bound.

D (X)

A. The Algorithm

The approximation algorithm transforms a given instance
of the optimal matching problem into a weighted matching
problem as follows. From the given bipartite graph G =
(X U Y , E) and set F C X, we construct a weighted bipartite
graph G’ = (F U Y, E’) where E’ C E is the set of

LIBESKIND-HADAS et al.: ALGORITHMS FOR REAL-TIME FAULT-TOLERANT PROCESSOR ARRAYS 509

f

2 .

X Y X Y

Average
percentage of

repairable
processors

W Z)
Fig. 1 I .
imation algorithm.

An example of the construction used in the ‘-optimal approx-

edges in E that are incident to vertices in F. For each edge
e = {z,y} E E with .x E F , let U), denote the number of
vertices in N that are adjacent to y. Edge e = {z,y} E E’
is assigned weight UI,. An example of this construction is
illustrated in Fig. 11.

Theorem 7: Let M be a minimum weight complete match-
ing in G’ and let k be the number of repairable vertices in an
optimal matching for G. If matching M is used in G, at least
& . k vertices are repairable.

€‘roo$ Let 1 denote the total number of edges in G
incident to vertices in N . Let W denote the total weight of
matching M in G’. Now consider the matching M in G. The
total number of edges between vertices in N and unmatched
vertices with respect to M in Y is T - IV. Therefore, at
least (T - W) / D (X) vertices in N must be adjacent to
unmatched vertices with respect to M . Let Mop, be an optimal
matching in G. Since MO,, is a maximum matching in G’, the
total weight of Mop, is at least W . Therefore, in graph G,
the number of edges between vertices in N and unmatched
vertices with respect to Mop, in Y is at most T - W . Thus,
k 5 1 - W and at least & . k vertices are repairable with

The complexity of the approximation algorithm is that of
finding a minimum cost maximum matching. This can be done
using one of a variety of polynomial time algorithms [20].

respect to M . 0

B. Experimental Results

In the first experiment, processor arrays with 32 primary
processors and 16 spare processors and D(X) = 4 were
generated with connections between primary processors and
spare processors selected randomly. In each randomly gener-
ated array, faulty elements were introduced at random with
fault frequency ranging from 0 to 30% in increments of 5%
and for each fault frequency value, 100 random arrays were
generated. For each array, the approximation algorithm was
used to find an assignment. In addition, the optimal assignment
was found for each array using an exhaustive search algorithm
and an assignment was found using standard matching. The
approximation algorithm found solutions that were at least
0.94 times the optimal size, whereas the standard matching
algorithm found solutions as low as 0.75 times optimal.
Optimal solutions were found using exhaustive search.

70
60
50

l e :-opt,mal, I 1
o Standard assignment

10
0

0 5 10 15 20 25 30

Percentage of faulty elements
Fig. 12. &-optimal algorithm versus arbitrary assignment for randomly
generated arrays with 100 primary processors, 50 spare processors, and
D (x) = 4.

Fig. 12 gives results for randomly generated arrays with 100
primary processors and 50 spare processors with D (X) = 4.
The performance of the approximation algorithm is compared
only to that of the standard matching algorithm, since these
arrays were too large to be solved optimally by exhaustive
search. These results indicate that the approximation algorithm
can find matchings that, in many cases, contain 6 to 14%
more repairable processors than are obtained by standard
matching.

VIII. CONCLUSION
In this paper we have presented efficient reconfiguration

algorithms for fault tolerant processor arrays operating in real-
time environments. Such systems typically alternate between
a strict mode and a relaxed mode. Although reconfiguration
must be performed in a purely local fashion during the strict
mode, global reconfiguration may be performed during the
relaxed mode to restore the system to a more reliable state. To
this end, the notations of safe and optimal assignments were
defined.

We have shown that the problem of finding safe and
optimal assignments is, in general, NP-complete. However,
we have shown that several broad classes of architectures have
properties that allow us to find safe and optimal assignments
in polynomial time. First, a linear time algorithm was given
for finding optimal assignments in topologies that contain
no cycles altemating between primary processors and spare
processors. It was observed that several architectures studied
in the literature have this property. Next, we considered topolo-
gies in which the primary and spare processors have constant
degree. A polynomial time safe assignment algorithm was
given for the case that each primary processor is adjacent to
at most two spare processors. Similarly, a linear time optimal
assignment algorithms was given for the case that each spare
processor is adjacent to at most two primary processors. Again,
several well-known fault tolerant architectures have these
properties. Additionally, it was shown that these results are
tight in the sense that the problems become NP-complete when

510 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 5, MAY 1995

they are further generalized. Finally, an approximation algo-
rithm was described that can be applied to any architecture.

REFERENCES

[I] P. Banerjee, “Strategies for reconfigunng hypercubes under faults,”
in Proc. 20th Int. Symp Fault-Tolerant Comput.. June 1990, pp
2 1 G 2 15.

[2] M. Chean and J . A. B. Fortes, “A taxonomy of reconfiguration tech-
niques for fault-tolerant processor arrays,” /E€€ Comput., vol. 23, pp.
55-69, Jan. 1990.

[3] C. Chen, A. Feng, T. Kikuno, and K. Torii, “Reconfiguration algo-
rithm for fault-tolerant arrays with minimum number of dangerous
processors,” in Proc. 2Ist Int. Symp. Fault-Tolerant Comput., 1991, pp.
452-459.

[4] M. Davis and H. Putnam, “A computing procedure for quantification
theory,” J. ACM, vol. 7, pp. 201-215, 1960.

[SI S . Even, A. Itai, and A. Shamir, “On the complexity of timetable and
multicommodity flow problems,’’ SIAM J. Comput., vol. 5, pp. 691-703,
1976.

[6] M. R. Garey and D. S . Johnson, Computer.7 and Intractability: A Guide
to the Theory of NP-Completeness.

[7] A. S. Hassan and V . K. Agarwal, “A fault-tolerant modular approach
architecture for binary trees,” / € € E Trans. Comput., vol. C-35, pp.
356-361, Apr. 1986.

[8] B. Kim and D. Towsley, “Dynamic flow control protocols for packet-
switching multiplexers serving real-time multipacket messages,” IEEE
Trans. Commun.. vol. COM-34. Am. 1986.

New York: Freeman, 1919.

I91 R. Libeskind-Hadas, “Reconfigurat’ion of fault-tolerant VLSI systems,”
Dep. of Comput. Sci., Univ. of Illinois at Urbana-Champaign, Tech.
Rep. UIUCDCS-R-93- 1824, July 1993.
F. Lombardi, R. Negrini, M. G. Sami and R. Stefanelli, “Reconfiguration
of VLSI arrays: A covering approach,” in Proc. 17th Int. Symp. Fault-
Tolerant Comput., 1987. pp. 25 1-256.
R. G. Melhem, “Bi-level reconfigurations of fault tolerant arrays,” IEEE
Trans. Comput., vol. 41. pp. 231-230, Feb. 1992.
K. Melhorn, Data Structures and Algorithms 2: Graph Algorithms and
NP-Completeness. New York: Springer-Verlag, 1984.
R. Negrini. M. G. Sami, and R. Stefanelli, Fault Tolerance Through
ReCoi7fipurUtlon in VLSI and WSI Arruvs. Cambridge, MA: The M.I.T.
Press,” 1989.

I141 C. S. Raehavendra. A. Avizienis, and M. Ercegovac, “Fault tolerance in .~
binary tree architectures,” IEEE Trans. Comput., vol. C-33, pp. 568-572,
June 1984.

[151 D. A. Rennels, “On implementing fault-tolerance in binary hypercubes,”
Proc. 16th lnt. Symp. Fault-Tolerant Compur., 1986, pp. 344-349.

[161 C. Savage, “Maximum matchings and trees,’’ Inform. Procesring Lett.,
vol. 10. nos. 4, 5, pp. 202-205, July 5, 1980.

[I71 N. Shrivastava and R. G. Melhem, “Efficient and optimal fault-to-
spare assignments in doubly fault tolerant arrays,” in Proc. IEEE Int.
Workshop on Defect and Fuult Tolerance in VLSI Syst., Nov. 1991, pp.

[181 A. D. Singh, “A reconfigurable modular fault tolerant binary tree
architecture,” in Proc. 17th Int. Symp. Fault-Tolerant Comput., 1987,
pp. 298-304.

[I91 -, “Interstitial redundancy: An area efficient fault tolerance scheme
for large area VLSI processor arrays.” l€€E Trans. Comput., vol. 37,
pp. 1398-1410, Nov. 1988.

[20] R. E. Tarjan. Data Structure.r and Nehvork Algorithms, Soc. Industr. and
Appf. Math., Philadelphia, PA, 1983.

[21] M. W. Yung, M. J. Little, R. D. Etchells, and .I. G. Nash, “Redundancy
for yield enhancement in the 3-D computer,” in Proc. IY89 / € € E Inl.
Con$ on Wafer Scale Integr., 1989, pp. 73-82.

247-259.

Ran Libeskind-Hadas (S’91-Mi93) received the
A.B. degree in applied mathematics from Harvard
University in 1987, and the M.S. and Ph.D. degrees
in computer science from the University of Illinois
at Urbana-Champaign in 1989 and 1993, respec-
tively.

He is currently an Assistant Professor of Com-
puter Science at Harvey Mudd College. His areas
of research interest are fault-tolerant computing,
parallel computing, and design and analysis of al-
gorithms.

Nimish Shrivastava received the M.S. degree in
computer science in 1988 from the University of
Pittsburgh, where he is currently working towards
the Ph.D. degree.

His research interests are in the area of fault tol-
erance, in general, and reconfiguration algorithms,
in particular.

Rami G. Melhem received the B.E. degee in elec-
trical engineering from Cairo University, Egypt, in
1916, the M.A. degree in mathematics, and the M.S.
degree in computer science from the University
of Pittsburgh in 1981, and the Ph.D. degree in
computer science from the University of Pittsburgh
in December 1983.

Since 1989, be has been an Associate Professor
of Computer Science at the University of Pittsburgh.
Previously, he was an Assistant Professor at Purdue
University and at the University of Pittsburgh. He

has published numerous papers in the areas of systolic architectures, parallel
computing, fault-tolerant processor arrays, and optical computing.

Dr. Melhem is a member of the IEEE Computer Society, the Association for
Computing Machinery, and the International Society for Optical Engineering.
He served on program committees of several conferences and workshops and
he is on the editorial board of the IEEE TRANSACTIONS ON COMPUTERS. He was
Guest Editor of the Special Issue of the Journal of Parallel and Distributed
Computing on OpticaI Computing and Interconnection Systems.

C. L. Liu (M’64-SM’82-F’86) received the B.S.
degree from Cheng Kung University in Taiwan in
1956. He received the M.S. and the E.E. degrees in
1960, and the Sc.D. degree in 1962, all in electri-
cal engineering from the Massachusetts Institute of
Technology.

He is currently a Professor of Computer Science
at the University of Illinois at Urbana-Champaign,
His research interests are in design and analysis
of algorithms, computer-aided design of integrated
circuits, and combinatorial mathematics.

