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Optimal Reconfiguration Algorithms for Real-Time 
Fault-Tolerant Processor Arrays 

Ran Libeskind-Hadas, Member, IEEE, Nimish Shrivastava, Rami G. Melhem, and C. L. Liu, Fellow, IEEE 

Abstract--In this paper we consider the problem of reconfigur- 
ing processor arrays subject to computational loads that alternate 
between two modes. A strict mode is characterized by a heavy 
computational load and severe constraints on response time while 
a relaxed mode is characterized by a relatively light computational 
load and relaxed constraints on response time. In the strict mode, 
reconfiguration is performed by a distributed local algorithm in 
order to achieve fast recovery from faults. In the relaxed mode, a 
global reconfiguration algorithm is used to restore the system to a 
state that maximizes the probability that future faults occurring 
in subsequent strict modes will be repairable. 

Several new results are given for this problem. Efficient re- 
configuration algorithms are described for a number of general 
classes of architectures. These general algorithms obviate the 
need for architecture-specific algorithms for architectures in these 
classes. We show that it is unlikely that similar algorithms 
can be obtained for related classes of architectures since the 
reconflguration problem for these classes is NP-complete. Finally, 
a general approximation algorithm is described that can be used 
for any architecture. Experimental results are given, suggesting 
that our algorithms are very effective. 

I. INTRODUCTION 
DVANCES in VLSI and WSI technologies allow in- A creasingly larger processor arrays to be fabricated on a 

single chip or wafer. As the number of processors in an array 
increases, the problem of reconfiguring the array to replace 
faults occuning at run-time becomes increasingly important. 
One common way of providing fault tolerance in processor 
arrays is to augment the array with a set of spare processors 
that can replace primary processors that become faulty. This 
approach has been proposed for a number of architectures [2], 
[lo], [13], [18], [19], [21] and a variety of reconfiguration 
algorithms for these reconfigurable systems have been studied. 

It has been observed that in many real-time applications, 
systems are subject to computational loads that alternate 
between a strict mode in which the computational load is 
heavy and severe constraints are imposed on response time, 
and a reluxed mode in which the computational load is 
light and the constraints on response time are relaxed sub- 
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stantially [8], [ l l ] .  In order to achieve fast response time, 
it is desirable that reconfiguration in the strict mode be 
performed in a distributed fashion so as not to incur the 
overhead of communication with a central host processor. 
Moreover, in order to minimize interruption in service in the 
strict mode, it is important that the replacement of a faulty 
processor causes only a minimal number of changes to the 
existing system interconnections. Therefore, during strict mode 
reconfiguration, a processor uses only very local knowledge 
about its immediate neighbors. These objectives are met by 
using a distributed local algorithm in the strict mode in which 
a faulty processor finds a replacement by selecting an available 
spare processor to which it is directly connected [ 113. 

Although local reconfiguration allows fast replacement of 
faulty processors, repeated application of the local reconfig- 
uration algorithm may quickly degrade the reliability of the 
system since spare elements are often not used in the most 
effective way. Consequently, in the relaxed mode we wish to 
use a global reconfiguration algorithm to restore the system 
to a more reliable state. Specifically, the goal of reconfig- 
uration in the relaxed mode is to assign faulty elements to 
spare elements maximizing the probability that any processor 
becoming faulty in the next strict mode will be repairable 
by the local reconfiguration algorithm. Such an assignment 
is called an optimal assignment. This approach of using both 
local and global reconfiguration algorithms, depending on the 
state of the system, is called bilevel reconjgurution. It was 
shown in [ 1 I] that bilevel reconfiguration can substantially 
improve the expected lifetime of a system and this approach 
was illustrated for the case of an augmented mesh architecture. 
Subsequently, Chen et al. [3] and Shrivastava and Melhem 
[ 171 independently discovered efficient optimal assignment 
algorithms for this particular architecture. 

In this paper we investigate the problem of finding optimal 
assignments for several broad classes of architectures. In Sec- 
tion I1 we give a formal description of the optimal assignment 
problem and show that the problem is, in the general case, NP- 
complete. In Section Ill we give several basic results that are 
used throughout the paper. In Sections IV, V, and VI we show 
that optimal assignments can be found in polynomial time for 
several classes of architectures, including a number of well- 
known architectures that have been proposed in the literature. 
Moreover, in Section VI1 we give an efficient approximation 
algorithm that can be used for any architecture. Experimental 
results are given at the end of each of Sections IV, V, VI, 
and VI1 to illustrate the effectiveness of these algorithms. 
Conclusions are given in Section VIII. 
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(a) A bipartite graph. (b) A matching with one unrepairable vertex, 

11. OFTIMAL RECONFIGURATION 
In this section we formally define the reconfiguration prob- 

lems studied in this paper. We begin by introducing some 
notation and definitions that will simplify our discussion. 

A processor array can be represented by a bipartite graph 
G = ( X  U Y,  E )  where X is the set of vertices representing 
primary processors and Y is the set of vertices representing 
nonfaulty spare processors.' There is an edge {x, y} E E iff 
the primary processor corresponding to x E X can be replaced 
by the spare processor corresponding to y E Y .  The connection 
allowing a spare processor to replace a primary processor may 
be due to a physical link between the two processors or some 
other mechanism such as a crossbar switch [ 151. The vertices 
in X are denoted primary vertices and the vertices in Y are 
denoted spare vertices. We let F C X represent the set of 
faulty primary processors and let N = X - F represent the 
set of nonfaulty primary processors. The vertices in F are 
denoted faulty primary vertices or simply faulty vertices and 
the vertices in N are denoted nonfaulty primary vertices or 
simply nonfaulty vertices. 

A matching, M ,  of F into Y represents an assignment of 
faulty primary processors to nonfaulty spare processors. A 
vertex x E N is said to be repairable with respect to M if it 
is adjacent to an unmatched vertex in Y .  Thus, a repairable 
vertex corresponds to a nonfaulty primary processor that can 
be replaced using the local reconfiguration algorithm. A vertex 
5 E N that is adjacent only to matched vertices in Y is said 
to be unrepairable since the corresponding primary processor 
cannot be replaced by the local reconfiguration algorithm. 
Our objective is to find a matching for F such that every 
vertex in N is repairable and thus any fault occurring in the 
next strict phase will be successfully replaced by the local 
reconfiguration algorithm. Such a matching is called a safe 
matching. Fig. 1 illustrates a matching and a safe matching in 
a bipartite graph with three faulty vertices. (Throughout this 
paper we will use the convention that primary vertices are 
denoted by empty squares, faulty primary vertices are denoted 
by darkened squares, and spare processors are denoted by 
empty circles.) 

For some patterns of faults, a safe matching may not 
exist. In this case, we wish to find a matching for F such 
that the number of repairable vertices in N is maximized, 
thus maximizing the probability that a fault occumng in the 

' Faulty spare processors may be disregarded since they cannot be used to 
replace primary processors. 

next strict phase will be successfully replaced by the local 
reconfiguration algorithm. Such a matching corresponds to 
an optimal assignment and is therefore called an optimul 
matching. In order to formally study the complexity of these 
problems, we define the decision problems corresponding to 
optimal and safe matchings as follows. 

1 )  Safe Matching Decision Problem (SMDP): 
INSTANCE: Bipartite graph G = (X U Y, E )  and F C X. 
QUESTION: Does there exist a matching M of F into Y 
such that all vertices in N = X - F are repairable with 
respect to M? 
2 )  Optimal Matching Decision Problem (OMDP) 
INSTANCE: Bipartite graph G = (X U Y,  E ) ,  F C: X ,  and 
positive integer K .  
QUESTION: Does there exist a matching M of F into Y 
such that at least K vertices in N = X - F are unrepairable 
with respect to M? 
Note that since the safe matching problem is a special case 

of the optimal matching problem, a polynomial time algorithm 
for the optimal matching problem implies a polynomial time 
algorithm for the safe matching problem. 

Theorem I :  SMDP is NP-complete. 
Pro08 SMDP is clearly in NP since we can guess a 

matching for F and verify in polynomial time that all vertices 
in N are repairable with respect to this matching. To show 
that SMDP is NP-complete, we reduce the NP-complete 3- 
Satisfiability Problem (3SAT) to this problem. 3SAT is defined 
as follows [6]. Given a set U of variables and a collection C 
of clauses over U such that each clause c E C has (CI = 3, 
is there a truth assignment for U that simultaneously satisfies 
all of the clauses in C? 

We transform a given instance of 3SAT to an instance of 
SMDP as follows. For each variable U E U there is a vertex 
xu E F ,  vertices Y ~ , T , Y ~ , F  E Y and edges { ~ , , Y ~ , T } ,  
{ z u , y u , ~ }  E E. For each clause c E C, where c contains 
literals s, t, and T ,  there is a vertex x, E N .  Let v denote 
the variable for literal s. If s is the unnegated variable w then 
there is an edge { x c , y V , ~ }  E E and if s is l v  then there is 
an edge {zc, y V , ~ }  E E. Similarly, a single edge is added for 
each literal t and T .  

We claim that there is a truth assignment that satisfies all of 
the clauses in C iff there is a safe matching in the constructed 
graph. Assume that there is a truth assignment that satisfies 
all of the clauses in C. Let s,, t,, and T,  denote the literals in 
clause c,. For each variable U E U we include edge {xu, y y u , ~ }  
in matching M if U is true in the assignment and include the 
edge {x,,yu,~} if U is false. This construction results in a 
matching for F. Moreover, for each c, E C, the vertex xc, E 
N is repairable with respect to M .  To see this, observe that 
since c, is satisfied by the truth assignment, at least one of the 
literals s,, t,, or T ,  is true. Without loss of generality, assume 
s, is true and let v denote the variable for s,. Ifs,  is w then w is 
true, {xu, y V , ~ }  E M by construction of M ,  and thus y V , ~  is 
unmatched. Since xct is adjacent to y V , ~  by construction, E,, is 
repairable. Similarly, if s, is l w  then v is false, {x,,y,,,~} E 
M ,  by construction of M ,  and thus y V , ~  is unmatched. In this 
case, x,, is adjacent to Y,,,T and zc, is repairable. 
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Conversely, assume that there exists a matching M for F 
such that all vertices in N are repairable. For each variable 
U E U, if 5 ,  is matched to y U , ~  then set U = true and, 
otherwise, set U = false. Since zc, is repairable, at least one 
of the three adjacent vertices is unmatched. If xcz is adjacent to 
unmatched vertex y V ; ~  then variable ti was set to false and, 
by construction, ci contains the literal l v  and is therefore 
satisfied. Similarly, if xcz is adjacent to unmatched vertex 
y U , ~  then variable v was set to true and, by construction, ci 
contains the literal ti and is therefore also satisfied. Therefore, 

0 
Corollary I: OMDP is NP-complete. 
Although Theorem 1 and its corollary tell us that the safe 

matching and optimal matching problems are NP-complete in 
general, some architectures have properties that allow us to 
find efficient algorithms for these problems. In Section IV we 
show that the optimal matching problem (and therefore the 
safe matching problem) can be solved in linear time for acyclic 
graphs.* This implies that optimal assignments can be found 
in a number of tree architectures [7], [18], [I91 and interstitial 
redundancy schemes [19]. This algorithm can also be applied 
to any architecture to find an optimal solution when the fault 
pattern in the array induces an acyclic graph. 

A primary processor can generally be connected to only a 
small fixed number of spare processors, and similarly, a spare 
processor can often only be connected to a small number 
of primary processors. This is due to the fixed number of 
ports on a processor and, in VLSI implementations, layout 
considerations that tightly restrict the number of neighbors to 
which a processor may be connected. We show that for certain 
bounds on processor degrees, safe matchings and optimal 
matchings can be found by efficient algorithms. 

In Section V we consider architectures in which the primary 
processors have constant degree. We show that when each 
primary processor is adjacent to at most two spares, safe 
matchings can be found in polynomial time. This implies that 
safe matchings can be found for a number of well-known ar- 
chitectures. For example, this result applies to the fault tolerant 
binary tree architecture proposed by Hassan and Agarwal [7] 
and Raghavendra et al. [ 141, the interstitial redundancy scheme 
used in the Hughes 3-D Computer [21], and the 2-D augmented 
mesh proposed in [ 1 I] ,  among others. We also show that this 
result is tight in the sense that the safe matching problem is 
NP-complete when each processor is adjacent to at most three 
spares. Moreover, the optimal matching problem remains NP- 
complete even if each processor is adjacent to at most two 
spares. However, we show that for arrays that satisfy some 
additional properties, the optimal matching problem can be 
solved efficiently even if each processor is adjacent to two or 
more spares. 

In Section VI we consider architectures in which the spare 
processors have constant degree. We show that when each 
spare processor is adjacent to at most two primary processors, 
optimal matchings (and therefore safe matchings) can be found 
in linear time. This result implies that optimal assignments can 

all clauses in C are satisfied by this assignment. 

'Recall that this means that the bipartite graph is acyclic. That is. there is 
no cycle in the processor array that altemates between primary processors and 
spare processors. The processor array may, however, contain other cycles. 
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Fig. 2. The regions corresponding to the bipartite graph in Fig. l(a). 

be found efficiently in a number of well-known architectures, 
such as the fault tolerant augmented hypercube proposed by 
Banerjee [I]  and a number of interstitial array schemes [19]. 
However, the problem of finding even safe matchings becomes 
NP-complete when each spare is adjacent to at most 3 primary 
processors. 

In Section VI1 we show how the NP-complete cases can 
be handled effectively. We give an efficient approximation 
algorithm that finds solutions that are within a constant factor 
of optimal for any architecture. 

111. DEFINITIONS AND LEMMAS 

In this section we introduce notation and state and prove 
several key lemmas that will be used throughout this paper. 

Let G = (X U Y,  E) be a bipartite graph and let F C X be 
the set of faulty vertices. A subgraph of G induced by a single 
spare vertex and all its adjacent primary vertices is called a 
1-fault-tolerant set (or 1-FT set). Observe that if a 1-FT set 
contains no faulty vertices then all of the primary vertices in 
this 1 -FT set will be repairable with respect to any matching of 
F into Y. Consequently, all the vertices and incident edges in 
such a I-FT set can be removed from G. Similarly, if a faulty 
primary vertex z is in only one I-FT set, then z must be 
replaced by the unique spare y in that 1-FT set. Consequently, 
vertices z and y and all incident edges may be removed from 
G. A graph G containing a 1-FT set with no faulty vertices, 
or a faulty primary vertex in only one 1-FT set, is said to be 
reducible and is said to be irreducible otherwise. Without loss 
of generality, in the remainder of this paper we assume that 
all graphs under consideration are irreducible. 

Let S denote the set of all 1-FT sets in G. (By the 
irreducibility assumption, each of these 1-FT sets contains at 
least one faulty primary vertex). Let  T be a binary relation on 
S defined as follows. For s,. sJ E S, (s,, s J )  E T iff s, and 
sJ contain a common faulty primary vertex. Since T is both 
reflexive and symmetric, the transitive closure of T, denoted 
T', is an equivalence relation of S. Each equivalence class of 
T' is a collection of 1-FT sets. The subgraph of G induced by 
the 1-FT sets in an equivalence class of T' is called a region 
of G. Fig. 2 shows an example of regions for the bipartite 
graph in Fig. l(a). The following lemma characterizes four 
important properties of regions. 

Lemma 1: Let G = (X U Y. E) be a bipartite graph and let 
F C X be the set of faulty vertices. 

1) Each region is a connected graph. 
2) Each region remans connected upon removal of non- 

faulty vertices and their incident edges. 
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3) Every faulty vertex is in exactly one region. 
4) A faulty vertex in region R is not adjacent to any spare 

Proof: Follows immediately from the definition of 

We now give three properties of bipartite graphs that are 
exploited in several of the algorithms presented in subsequent 
sections. Let H = ( A  U B ,  E )  be a bipartite graph3 and let 
S C A U B. We define D ( S )  to be the maximum degree 
among all vertices in S. 

Lemma 2: Let H = ( A  U B ,  E )  be a connected bipartite 
graph. 

1) If D ( A )  5 2 then IAl 2 (Bl - 1. 
2) If H is acyclic and every vertex in A has degree exactly 

- k where 

vertex that is not in region R. 

regions. 0 

2 then IAl = JBI - 1. 
Proof: Let P = [ I? [  and assume that IAl = 

k 2 2. Since H is connected, it has at least 

[ + ( a - k )  - 1 =2P - k -  1 

edges. Therefore, there exists a vertex in A with degree at least 

2c - IC - 1 2(! - k )  + k - 1 > 2. - - 
8 - k  l - k  

However, this contradicts our assumption that D ( A )  5 2 .  
Next, assume that H is acyclic and every vertex in A has 

degree exactly 2. If IBl 5 IAl then there are IAl + IBI - 1 5 
21AI - 1 edges in the tree, contradicting the assumption that 
every vertex in A has degree exactly 2. If IBI > IAl + 1 
then there are IAl + IBI - 1 > 21A/ edges in the graph, again 
contradicting the assumption that every vertex in A has degree 

Lemma 3: Let H = (11 U B ,  E )  be a connected bipartite 
graph. If D ( A )  5 2 and IAl = IBI then there exists a perfect 
matching of A into B and this matching can be found in 
linear time. 

Proof: Let T be a spanning tree of H .  Tree T can be 
found in linear time using breadth-first search. We prove the 
stronger results that there exists a perfect matching in 1 from 
A to B. We show that there exists a perfect matching in T 
by induction on n = [Al. For n = 1 there is clearly a perfect 
matching. Assume that the assertion is true for n = k - 1 and 
consider R = k.  There are 2k vertices and thus 2k - 1 edges 
in T .  Therefore, there exists some vertex b E B with degree 
1. Vertex b is matched to its neighbor a. Since the degree 
of a is at most 2 ,  tree T remains connected when a and b 
and all incident edges are removed from the graph. By the 
induction hypothesis, this subtree has a perfect matching. This 
matching, augmented with edge { a ,  b}  comprises a perfect 
matching for T and thus for H .  This argument indicates that 
a perfect matching can be found in linear time by repeatedly 
selecting a spare vertex of degree 1 and matching it to its 

exactly 2. 0 

neighbor. 0 

3We denote the graph in this way to distinguish it  from the graph G = 
( X  U Y, E )  which we reserve to represent a processor array. 

Lemma 4: Let H = ( A  U B ,  E )  be a connected bipartite 
graph. If H is acyclic and every vertex in A has degree exactly 
2, then for every b E B there exists a perfect matching of A 
into B - { b }  and this matching can be found in linear time. 

Proof: By Lemma 2, IBI = IAl+ 1. Let b be an arbitrary 
vertex in B and let Cl,. . . , CI, be the connected components 
induced by the removal of b from H .  Let A; and B; denote 
the subsets of A and B, respectively, in Ci, 1 5 i 5 k .  
We claim that lAil = (Bill 1 5 i 5 k .  Assume otherwise. 
Then lAjl # IBj( for some j ,  1 5 j 5 k.  By construction 
of the components, exactly one vertex in Ai has degree 1 and 
all remaining vertices in Ai have degree 2, for all 1 5 i 5 I C .  
Thus, C; has exactly 2(Aj  I - 1 edges, 1 5 i 5 k ,  and therefore 
C, has exactly 21Ajl - 1 edges. If lAjl > 1Bj1 then Cj has at 
most 21AjJ - 1 vertices and, since Cj is acyclic, it has at most 
21Aj I - 2 edges, a contradiction. Similarly, if IAj I < IBj I then 
Cj has at least 21Aj I + 1 vertices and thus at least 21Ajl edges, 
again a contradiction. Therefore, [Ail = for 1 5 i 5 k ,  
and by Lemma 3 a matching in Ci can be found in linear time. 
Consequently, a perfect matching can be found in H in linear 
time. 0 

IV. ACYCLIC GRAPHS 

In this section we describe a linear time algorithm to find 
optimal matchings in acyclic bipartite graphs. Experimental 
results for this algorithm are given in Section IV-B. 

A. The Optimal Matching Algorithm 

Let G be an acyclic bipartite graph and let the root r of 
G be an arbitrary nonfaulty primary vertex. (If all primary 
vertices are faulty then any matching from F to Y is an optimal 
matching and matchings in acyclic graphs can be found in 
linear time by well-known algorithms [16].) Without loss of 
generality, we assume that G is irreducible and connected, and 
therefore a tree. (If G is not connected then each connected 
component can be treated individually.) 

An example of an architecture with an acyclic bipartite 
graph is shown in Fig. 3(a). This is the fault tolerant modular 
binary tree architecture proposed by Hassan and Agarwal [7]. 
The corresponding irreducible bipartite graph G is shown 
in Fig. 3(b).4 The vertex 2 1  has been arbitrarily selected as 
the root of G. Note that the I - F l -  set induced by 7& and 
its neighbors contains no nonfaulty vertices and therefore 
these vertices and their incident edges do not appear in the 
irreducible graph G. 

Since a region is a connected subgraph of G, it is also a 
tree. The root of region R is denoted by p ( R ) .  For example, 
the two regions R1 and R2 for the graph G in Fig. 3(b) are 
shown in Fig. 3(c). The roots of these regions are z1 and z2, 
respectively. The following lemma states two basic properties 
of regions in trees. 

LRmma 5: Let R be a region in tree G. 
1) p(R)  is a nonfaulty primary vertex. 
2) p(R)  has exactly one child in R. 

4Note that although D ( X )  = 2 in this example, the algorithm presented 
here applies to acyclic graphs with arbitrary vertex degrees. 
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(a) A fault tolerant modular binary tree. (b) The reduced bipartite 

Proof: First, assume that p(R) is a spare vertex. By the 
definition of regions, every neighbor of a spare vertex is in 
R. In particular, the parent of p(R) is in R, a contradiction. 
Next, assume that p (  R) is faulty. By the definition of regions, 
every spare vertex adjacent to a faulty vertex is in the same 
region as the faulty vertex. In particular, the parent of p(R) is 
also in R, and thus p( R) is not the root of R, a contradiction. 
Finally, assume that p ( R )  has two children, y1 and y2. Since 
G is a tree, p( R)  is the only common neighbor of spares y1 

and y2. Since p(R) is nonfaulty, y1 and yp cannot belong to 

The optimal matching algorithm considers regions in a 
“bottom-up” fashion. To this end, we define the notion of one 
region being above or below another region. Formally, let R 
denote the set of regions of G and let 3~ be a binary relation 
on R defined as follows. For Ri,Rj E R, Ri -+ Rj iff 
Ri = Rj or the path from T ,  the root of G, to p(R;) passes 
through some vertex of Rj other than p(Rj). If R; +R Rj 
then Ri is said to be below Rj and Rj is said to be above 
Ri. For example, in Fig. 3(c), region R1 is above region R2 
because the path from z1 to p(R2) = x2  passes through vertex 
yl. The relation 5~ is easily verified to be a partial ordering 
relation on R. 

Let R E R be any minimal element of the partial order. 
That is, there exists no region that is below R. Such a region 
is called a minimal region. Each spare vertex y in R is assigned 
an ordered pair cost defined by cost(y) = ( a , b )  where a is 
the number of nonfaulty primary vertices adjacent to y but not 
adjacent to any other spare vertices in G, and b is the number 
of nonfaulty primary vertices adjacent to y and adjacent to at 
least one other spare vertex in G. Intuitively, the cost of vertex 
y tells us that if vertex y is matched to a faulty vertex then a 
nonfaulty vertices in G will certainly become unrepairable and 
b additional vertices in G may become unrepairable, depending 
on the status of the other spare vertices. For example, in 
Fig. 3, R2 is a minimal region. In R2, cost(y2) = (0, I),  
cost(y4) = (2:0), and cost(y5) = (2,O). 

Let cost(y;) = (a i ,b i ) .  We note that if the property bi = 0 
holds for every spare vertex yi, then the number of unre- 
pairable vertices with respect to a given matching is simply 
C,,,s ai where S denotes the set of matched spare vertices. 
Unfortunately, this property is generally not satisfied. How- 
ever, the following lemma suggests that in a minimal region, 
this property is “almost” satisfied. 

Lemma 6: Let R be a minimal region and let s be the 
unique child of p(R) in R. For each spare processor yi in 
R, let cost(yi) = ( a i , b i ) .  If yi # s then b; = 0. If y; = s 
then bi = 1 if p (  R)  contains a neighbor other than s in G and 
b; = 0 otherwise. 

Proof: If yi # s, then by the definition of regions, the 
parent of yi must be faulty. Assume that b; > 0. Then some 
nonfaulty child of yi , 5, must have at least one child. Observe 
that z cannot have any faulty descendants, since otherwise R 
would not be minimal. On the other hand, 5 cannot have only 
nonfaulty descendants, since otherwise G is not irreducible, 
a contradiction. if yi = s, all nonfaulty children of y; must 
again be adjacent to no other spares. Thus, if p (  R )  is adjacent 
to a spare vertex other than s: bi = 1 and b; = 0 otherwise. 0 

We define addition on costs by ( a 1 , b l )  + ( a p , b z )  = (a1 + 
ap, bl+bz). We let 511ex be the lexicographic ordering on costs. 
That is, ( a 1 , b l )  51ex (a2 ,bz)  iff a1 < a2 or a1 = a2 and 
bl 5 b p .  Let MR be a matching of all faulty primary vertices 
in R to spare vertices in R. The cost of M R  is defined to be 
(a l , b l )++. . .+(an ,bn )  whereyl, ...,yn arethesparevertices 
matched in MR and (a;, b i )  is the cost of spare vertex yi .  
Observe that 51ex is a total ordering on the costs of matchings. 
Thus, a minimum cost matching in region R is a matching of 

the same region. 0 
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Input: Acyclic bipartite graph G = (X U Y, E) and set F. 
Output: Optimal matching for F in G. 

begin 
Mopt = 0. 
Find all regions using breadth-first search. 
Use topological sort to order the regions. 
while regions remain do 

Select a minimum region R. 
Compute costs for each spare vertex in R. 
Find a minimum cost matching M in R. 
Mopt = Mopt U M .  
Remove R from G. 

endwhile 
return( Mopt). 

end 
Fig. 4. Optimal matching algorithm for acyclic graphs. 

all faulty primary vertices to spare vertices in R of minimum 
cost with respect to 51ex. 

The optimal matching algorithm is based on the following 
property of minimum cost matchings: Any minimum cost 
matching in a minimal region of a tree is a subset of an optimal 
matching. This property implies that an optimal matching may 
be constructed by repeatedly selecting a minimal region and 
finding a minimum cost matching in the region, until all faulty 
primary vertices have been matched to spare vertices. 

Theorem 2: Let R be a minimal region in tree G and let 
M R , ~ ~ ~  be any minimum cost matching in R. The matching 
M R , ~ ~ ~  is a subset of an optimal matching for G. 

Proof: Let M be an optimal matching for G and let MR 
be the subset of M restricted to R. Let ( a l ,  PI) and (a2, P 2 )  

be the costs of M R  and M R , ~ ~ ~ ,  respectively. Let U denote 
the number of unrepairable vertices outside of R with respect 
to M. Let M’ be the matching obtained from M by replacing 
the edges in MR by the edges in M R , ~ ~ , , .  We claim that the 
number of unrepairable vertices with respect to M’ is no larger 
than the number of unrepairable vertices with respect to M. 
Assume that p(R) is adjacent to un unmatched spare with 
respect to M outside of R. Then p(R) is repairable with 
respect to both M and M‘. From Lemma 6, it follows that 
the number of unrepairable vertices with respect to M and 
M‘ is U + a1 and U + L Y ~ ,  respectively. Since a2 5 a1, we 
conclude that M’ is an optimal matching. Next, assume that 
p(R) is adjacent to at least one spare vertex outside R but 
all such spares are matched with respect to M. Then p(R) 
is repairable only if its child in R is unmatched. Thus, the 
number of unrepairable vertices in M and M‘ is U + a1 + 
and U + a2 + Pz, respectively. By Lemma 6, 0 5 PI, ,& 5 1, 
and thus a2 + /32 5 a1 + PI. We again conclude that M’ is an 
optimal matching. Finally, assume that p (  R) has degree 1 in 
G. It follows from Lemma 6, that there are U + a1 and U + a2 

unrepairable vertices with respect to M and M’, respectively. 
0 

Theorem 2 suggests the following algorithm for finding 
optimal matchings in acyclic graphs. First, all the regions in the 
graph are found using breadth-first search. A minimal region 
is then selected, the costs of spare vertices in the region are 
determined, and a minimum cost matching is found in this 

Since a2 5 al, M’ is an optimal matching. 

region. This step is repeated until no more regions remain. 
The algorithm is summarized in Fig. 4. 

We now show that a minimum cost matching in a minimal 
region can be found by an efficient algorithm. By the irre- 
ducibility assumption, every faulty vertex x in minimal region 
R has at least one child. Moreover, by Lemma 5, p(R) is 
nonfaulty and thus every faulty vertex in R has a parent in R. 
The following theorem is the basis for finding minimum cost 
matchings in minimal regions in linear time. 

Theorem3: Let x be a faulty primary vertex in R in 
which all faulty descendants of x have exactly one child. Let 
y1, y2, . . . , yk denote the children of x and let ci denote the 
maximum cost among yi and all of its descendants where 
ci 51ex ci+l, for 1 5 i 5 C - 1. If there exists a matching in 
R then there exists a minimum cost matching in R in which 
x is not matched to any of y2,. . . , Yk. 

Proof: Assume that in every minimum cost matching 
in R, x is matched to one of yz,. . . ,yk. Since each faulty 
descendant of yi has exactly one child and one parent, by 
Lemma 2 the subtree of R rooted at yi, for each 1 5 i 5 k, 
has one more spare vertex than faulty primary vertices. Let 
M R , ~ ~ , ,  be a minimum cost matching for R in which z is 
matched to yj, for some 2 5 j 5 I C .  From the observation 
above, every spare vertex in the subtree rooted at yj is matched 
in M R , ~ ~ ~ .  Let y’ denote the spare vertex in subtree rooted 
at y j  with cost cj.  Since x is not matched to y1, there is 
one unused spare vertex, y”, in the subtree rooted at yl. 
Let c” denote the cost of y”. Let P denote the unique path 
in R from y’ to y”. Since P is an alternating path, a new 
matching M R , , , ~ ~  is obtained by making each matched edge 
in P unmatched and making each unmatched edge a matched 
edge. Since y’’ is in the subtree rooted at y1, vertex 2 is 
matched to y1 in M R , ~ ~ ~ .  Moreover, the cost of M R , ~ ~ ~  is 
no larger than the cost of M R , ~ ~ , ,  since c” -(lex c1 -(lex cj, 
contradicting the assumption that no minimum cost matching 

0 
Let x be a faulty primary vertex in R in which all faulty 

descendants have one child. Such a vertex always exists, since 
any faulty vertex in R with no faulty descendants has this 
property. Let y1, . . . , yk be the children of x as in Theorem 
3. Let Ti denote the subtree rooted at yi and let T denote 
the subtree obtained by removing subtrees T2, . . . , T k  from 
R. Each faulty primary vertex in T2,. . . ,Tk has degree 2. 
By Theorem 3, if a matching in R exists then a minimum 
cost matching can be obtained as the union of minimum cost 
matchings in T and Tz, . . . , T k .  This partitioning can now be 
applied to T and repeated until the faulty vertices in each 
subtree have degree 2. 

Lemma 4 tells us that in each subtree constructed above, a 
perfect matching is induced by the removal of any single spare 
vertex. Therefore, a minimum cost matching in a subtree is 
obtained by removing the vertex with maximum cost. 

We now illustrate the execution of this algorithm for the 
faulty tree of Fig. 3(a). First, regions R1 and R2 shown in 
Fig. 3(c) are found. Region R2 is minimal. Each faulty vertex 
in R2 has degree 2. Therefore, a spare vertex in R2 with 
maximum cost is selected from R2 to remain unmatched. 
Either y4 or y5 may be selected. Assume that y4 is selected. 

in R matches x to y1. 
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Then x4 is matched to y 2  and x5 is matched to y5. Next, region 
R1 is considered. Again, each faulty vertex already has degree 
2. Therefore, a spare vertex of maximum cost is selected to 
remain unmatched. Either yl or y7 may be selected. If ?jl is 
selected, 23 is matched to y 3  and :1;7 is matched to y7. This 
optimal matching leaves four vertices unrepairable. In contrast. 
the worst possible matching for this faulty tree leaves seven 
vertices unrepairable. 

Finally, the time complexity of the algorithm is linear in the 
number of vertices in the tree. To see this, note that the regions 
can be found in linear time by breadth-first search. Minimal 
regions can be identified in constant time by maintaining a 
topological ordering of the regions (which is precomputed in 
linear time). Finally, a minimum cost matching can be found in 
each minimal region by partitioning the region into subtrees 
in linear time and finding minimum cost matchings in  each 
subtree, which again requires only linear time. 

o Standard assignment 

I I I I I  

B. Experimental Results 

The optimal matching algorithm for acyclic graphs was 
compared to the standard matching algorithm for acyclic 
graphs [16] on fault tolerant modular binary trees with 64 
primary processors and 32 spare processors.' Both algorithms 
run in linear time. However, the optimal algorithm found 
assignments with substantially fewer unrepairable processors 
than those found by the standard matching algorithm. In 
our experiment, trees were generated with faulty elements 
introduced at random according to a uniform distribution. The 
fault frequency ranged from 0% to 30% in increments of 
5%. (At fault frequency 35% there were already fewer spare 
processors than faulty processors, and thus no assignments 
could be found.) For each fault frequency, 100 faulty trees 
were generated. When the fault frequency was 15%, the 
optimal algorithm found assignments in which an average 
of over 96% of the nonfaulty processors were repairable. In 
contrast, the standard matching algorithm found assignments 
in which only 88% of the nonfaulty processors were repairable 
on average. When the fault frequency increased to 3096, 
the results were even more striking: The optimal algorithm 
left nearly 80% of the nonfaulty processors repairable while 
the standard matching algorithm left fewer than 43% of the 
nonfaulty processors repairable on average. The results are 
summarized in Fig. 5. 

v. DEGREE BOUNDS ON PRIMARY PROCESSORS 

In this section we characterize the complexity and give 
algorithms for the safe and optimal matching problems when 
the primary processors have a bounded number of adjacent 
spares. Recall that D ( X )  represent the maximum degree 
among all vertices in X ,  that is, D ( X )  is the maximum 
number of spare processors that are connected to a primary 
processor. In Section V-A we show that the safe matching 
problem can be solved in polynomial time when D ( X )  5 2. 
Moreover, the safe matching problem becomes NP-complete 
when D ( X )  = 3.  We also show that the optimal matching 

'All simulations described in this paper were implemented in C and C++ 
on a Sun SparcStation and an Encore Multimax computer. 

problem remains NP-complete even when D ( X )  5 2 .  How- 
ever, some architectures have additional properties which may 
be exploited to solve the optimal matching problem efficiently. 
As an example, in Section V-B we give a linear time algo- 
rithm for finding optimal assignments in the augmented mesh 
architecture proposed in [ 1 I]. Experimental results are given 
in Section V-C. 

A.  Algorithms and Complexity 

We begin by showing that the safe matching problem can be 
solved by an efficient algorithm when D(X) 5 2. Clearly, for 
some patterns of faults there exists an optimal matching but no 
safe matching. However, experimental results given in Section 
V-C suggest that when the number of faulty processors is not 
too large, most optimal matchings are in fact safe matchings 
and thus our algorithm can be used. Moreover, in systems in 
which high reliability is of the greatest concern, we may insist 
on matchings to be safe. 

We transform the safe matching problem to the 2- 
satisfiability problem (2SAT) which can be solved in 
polynomial time by any of several algorithms [4], [ 5 ] .  2SAT is 
defined as follows. Given a set U of variables and a collection 
G of clauses over U such that each clause c E C has I C [  = 2, 
is there a truth assignment for U that satisfies all of the 
clauses in C? 

For every edge {xZ, y j }  E E where xi E F ,  we introduce 
the boolean variable ui,j. For every edge {xi, yJ} E E where 
5; E N ,  we introduce the boolean variable u;,~. We let 
ui,j = true represent the situation in which {xi, y j }  is in the 
matching and u i , j  = false represent the situation in which 
{z;, g j }  is not in the matching. Similarly, we let 71i.j = true 
represent the situation in which vertex z; E N is repairable 
by vertex y j  and = false represent the situation in which 
xi is not repairable by vertex y j .  The set C is obtained from 
the following construction. 

Construction I :  
T I .  (ui, j V u i , k )  for each vertex xi E F adjacent to vertices 
~j and Y k .  

T2. ( l u ; , j  V 7 u i . k )  for each vertex xi E F adjacent to 
vertices yj and y/k. 
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T3. ('ui,j v - m h , j )  for each pair of vertices x i ,xh  E F 
adjacent to a common vertex yj. 

T4. ( v , , ~  V u, ,k )  for each vertex :c, E N adjacent to vertices 
Y J  and Yk. 

T5. ( ~ w i , ~  v l u h , j )  for every vertex z; E N and vertex 
zfL E F adjacent to a common vertex yj.  
Since there are only a polynomial number of variables, 

only a polynomial number of clauses are introduced by this 
construction. 

Theorem 4: The instance of 2SAT from Construction 1 is 
satisfiable iff there exists a matching for F in which all vertices 
in N are repairable. 

Proof: Consider a satisfying assignment for the set of 
clauses. For each vertex zj E F ,  we include {xj,yj} in 
matching A4 if u i ; j  = true. Each vertex xi E F is matched to 
at least one vertex in Y since the clauses in 7'1 are satisfied. 
Moreover, each vertex x ;  E F is not matched to two vertices 
in I- since the clauses in 7'2 are satisfied. A vertex y j  E Y is 
matched to at most one vertex in F since the clauses in 1'3 are 
satisfied. Therefore, each vertex in F is matched to a unique 
vertex in Y .  Each vertex ri E N is repairable by a vertex in 
Y since the clauses in T4 are satisfied and a vertex in N is 
not repairable by a vertex in Y that is matched to a vertex in 
F since the clauses in T5 are satisfied. 

Conversely, assume that matching M for F has IN1 re- 
pairable vertices. For each variable u i , j ,  assign I L ; , ~  = true 
if vertex xi E F is matched to y j  and assign u;,j = false 
otherwise. Similarly, for each variable assign v;,j = true 
if vertex xi  E N is repairable by vertex y j  and assign 
u;,j = false otherwise. Each clause in T1 is satisfied since 
every vertex in F is matched. Each clause in 1'2 is satisfied 
since a vertex in F cannot be matched to two vertices in Y .  
Each clause in T3 is satisfied since a vertex in Y is matched 
to a single vertex in F .  Each clause in 7'4 is satisfied since 
each vertex in N is repairable. Finally, each clause in T5 is 
satisfied since a vertex in W is only repairable by a vertex 

0 
The algorithm is summarized in Fig. 6. 
This result is tight in the sense that the safe matching 

problem becomes NP-complete when D( X) = 3. This follows 
from the observation that in the proof of Theorem 1 every 
vertex in X has degree at most 3. Therefore, we have the 
following corollary to Theorem I. 

Corollav 2: SMDP is NP-complete even if D ( X )  = 3. 
Finally, we observe that the result of Theorem 2 cannot be 

Theorem 5: OMDP is NP-complete even if D ( X )  5 2 .  
Proof: The proof is similar to the proof of Theorem 

1 except that the reduction is now from the Maximum 2- 
Satisfiability Problem (MAX 2SAT). MAX 2SAT is defined 
as follows 161. Given a set 11 of variables, a collection C of 
clauses over U such that each clause c E C has I C (  = 2, and 
a positive integer K 5 IC[, is there a truth assignment for 
U that simultaneously satisfied at least K of the clauses in 
C? 

y E Y if y is unmatched. 

extended to optimal matchings. 

Input: Bipartite graph G = (XU Y, E )  and set F where D ( X )  5 2. 
Output: Safe matching for F in G. 

begin 
Construct an instance of 2SAT as in Construction 1 .  
Determine a satisfying assignment for the 2SAT instance, if one exists, 

if 2SAT instance unsatisfiable halt 
for each boolean variable U,,, with value true do 

endfor 

using a linear-time algorithm [12]. 

Match 5,  to y,; 

end 
Fig. 6. Safe matching algorithm for D(K) 5 2. 

The reduction from the MAX 2SAT instance to an instance 
of OMDP proceeds as in the proof of Theorem 1 except that 
now each clause c E C contains only two literals and thus 
corresponds to a vertex x, in N adjacent to only two vertices 
in Y .  

We claim that there is a truth assignment that satisfies at 
least K of the clauses in C iff there is a matching for F 
with at least K repairable vertices. The proof of this claim is 

0 analogous to the proof of Theorem 1. 

B. Augmented Mesh 

Although we have shown that OMDP is NP-complete for 
D ( X )  5 2, some architectures have topological properties that 
can be exploited to find efficient algorithms for OMDP. In this 
section we give an example of an augmented mesh architecture 
in which D ( X )  = 2 and show how OMDP can be solved in 
linear time for this architecture. 

An augmented mesh is a v? x & grid of primary vertices 
such that each row of primary vertices shares a common 
spare vertex and each column of primary vertices shares 
a common spare vertex. The & spare vertices for rows 
and columns are called spare row vertices and spare column 
vertices, respectively. For example, a 4 x 4 augmented mesh 
with 6 faulty primary processors is shown in Fig. 7(a). 

The optimal reconfiguration problem for augmented meshes 
was proposed in [ l  11. In [3] an O(t) algorithm for OMDP was 
given for this architecture. In this section we describe a much 
simpler O ( a )  algorithm. 

x & augmented mesh where 
X denotes the set of primary vertices, Y denotes the set of 
spare vertices. and E denotes the set of edges between primary 
vertices and spare vertices. The set Y of spare processors is 
partitioned into two sets, SR and SC, denoting the spare row 
vertices and spare column vertices, respectively. 

Let R I , .  . . , RI, denote the regions in G. For example, the 
graph in Fig. 7(a) has two regions, one of which, RI ,  is shown 
in Fig. 7(b). For each region, R;, let X ;  denote the set of 
primary vertices in Ri and let Y,  denote the set of spare 
vertices in R;. In addition, let Fi C X i  denote the set of 
faulty primary vertices in Ri and let SR;, SC; C Yi denote 
the set of spare row vertices and spare column vertices in 
R;, respectively. By Lemma 1, R; remains connected when 
all nonfaulty vertices are removed from Ri, leaving only the 
vertices in F, and Y,. Since each vertex in Fi has degree 
exactly 2 by the irreducibility assumption, from Lemma 2 
it follows that lFil > 1x1 - 1. In other words, each region 

Let G = (X U Y,  E )  be a 
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(b) 

Fig. 7. (a) A 4 x 4 augmented mesh. (b) A region. 

contains at most one more spare vertex than faulty vertex. If 
lF;l > 1x1 then there are more faulty vertices than spares in 
region R; and thus some faulty vertices cannot be replaced. If 
lFil = 1x1 then by Lemma 3 there exists a perfect matching 
of F; into Y,  that can be found in linear time. Therefore, we 
must only consider the case that each region has the property 
lFil = lY;J- 1. In this case, the graph obtained by removing all 
nonfaulty primary vertices from R; contains 214 I + 1 vertices 
and 21F;J edges and is therefore a tree. By Lemma 4, a perfect 
matching can be found from Fi to Y,  - {y} for any y E Y,. 
It now only remains to be shown how a spare vertex, y, from 
each set yi should be selected to be left unmatched such that 
the total number of unrepairable vertices is minimized. 

Assume that IF;[ = 1x1 - 1 for each region Ri, 1 5 i 5 IC. 
Let y be a spare vertex and let n ( y )  denote the number of 
nonfaulty vertices adjacent to y. Let ~i E SRi be a spare 
row vertex with the property n(r,)  2 n(y) Vy E SR; and 
let e; E SC; be a spare column vertex with the property 
n(c;)  2 n(y) Vy E SC;. That is, ~i is the spare row vertex in 
region Ri adjacent to the largest number of nonfaulty vertices 
and c; is the spare column vertex in region Ri adjacent to the 
largest number of nonfaulty vertices. For example, in region 
R1 in Fig. 7(b), TI = y7 and c1 = yp. Intuitively, either of 
T; or ci are good candidates to remain unmatched since many 
nonfaulty vertices are repairable with respect to these vertices. 
Indeed, the following lemma suggests that in each region Ri 
we may restrict our attention to the vertices T;  and e;. 
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Lemma 7: Let M be a matching in G and let U ,  denote 
the unmatched vertex in R,. If U ,  E SR,  ( U ,  E SC,) then by 
replacing U ,  by T,(c , )  as the unmatched vertex, the number of 
unrepairable vertices does not increase. 

Proof: Without loss of generality, assume that U ,  E SR, 
and U ,  # T,.  Since U ,  is a spare row vertex and it is the 
only unmatched spare vertex in R,, every spare column vertex 
in R, must be matched in M. Let Nu, and NTt denote the 
set of nonfaulty neighbors or U ,  and T,, respectively. Since 
n(r,) 2 n(u,), IN,., I 2 INu, I .  We partition Nu, into two sets, 
Au, and Bu,, such that Au, contains those vertices whose 
corresponding spare column vertices are not in R, and those 
that are in R,, respectively. Similarly, we partition N,, into 
two sets A,* and BT,. Note that /Art  I = lAu, I since every 
spare column vertex not in R, cannot have a faulty vertex in 
common with a spare row vertex in R,. Thus, I 2 I&, I. 
Therefore, the net increase in the number of unrepairable 
vertices introduced by making U ,  matched and T ,  unmatched 

U 
We must now determine which of the spares T, or cz should 

be left unmatched in each region R,. Let d, = n(r,) - n(c,). 
Let T be a permutation of { 1,. . . , I C }  such that d,(l) 2 d+) 2 
. . . 2 d T ( k ) .  That is, T is the permutation that sorts the d, 
values in nonincreasing order. 
Lemma 8: Among all matchings with exactly .t unmatched 

spare row vertices. the matching obtained by leaving vertices 
rT(1), . . . , rn(e), C,(e+ l ) ,  . . . , c x ( k )  unmatched has the least 
number of unrepairable vertices. 

Proof: Let M be the matching obtained by leaving ver- 
tices T , ( ~ ) ,  . . . , T T ( e ) ,  c,(e+l), . . . , cT(k) unmatched and let M’ 
be the matching obtained by leaving vertices T , ( ~ ) ,  . . . , To(e),  

c,([+~), . . . , co(k) unmatched, where c is any permutation of 
{ 1, . . . , IC}. (By Lemma 7, we may restrict our attention to 
such matchings without loss of generality.) The number of 
repairable vertices with respect to M is 

is /&,I - IB,I 5 0. 

e k 

i= 1 j = e + i  

since each nonfaulty vertex adjacent to both an unmatched 
spare row vertex and an unmatched spare column vertex is 
counted twice and there are .t x (k - e )  such vertices. Similarly, 
the number of repairable vertices with respect to M’ is 

e k 

L = l  j=e+i  
S M ’  = C n ( r u ( i ) )  + n(cu(j))  - e x (IC - e ) .  

Let c = xF=l n(c;> - t x (IC - e>. Then, 

SM - C 2 SM.~’ - C 
e 

SM 2 S M ~  Cd,(i) 
i=l  

P 

2 &(i) 
~ 

1=1 

By the definition of T ,  d,(;)  2 du( i ) ,  1 5 i 5 IC. Thus, 
SM 2 SMI and thus matching M has the least number 
of unrepairable vertices among all matchings with exactly e 

0 unmatched spare row vertices. 
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Input: Augmented mesh G = (X U Y,  E )  and set F 
Output: Optimal matching for F in G. 

begin 
Find regions in G. /* Let k denote number of regions */ 
For each region, R,,  find r,, c,, and d, .  
Sort the d, values using a linear time sorting algorithm. 
for e = 0 to k do 

Compute minimum number of unrepairable vertices in a matching 
with exactly e unmatched row vertices. 

endfor 
Select the value of P minimizing number of unrepairable vertices 

and remove the corresponding row and column spares. 
Use algorithm of Lemma 3 to find matchings in each region. 

Optimal matching algorithm for the augmented mesh. 
end 

Fig. 8. 

An optimal matching can now be obtained by finding 
the matching with the least number of unrepairable vertices 
for each I ,  1 5 1 5 I C ,  and selecting the matching with 
the minimum number of unrepairable vertices among these 
matchings. 

By employing simple data structures, the time complexity 
of this algorithm is seen to be O ( d ) .  Since there are only 2& 
spare vertices, if the number of faulty processors exceeds this 
amount the algorithm reports that the array is not repairable 
and halts. Otherwise, two arrays are created, row and column, 
such that the ith element of row contains a pointer to a linked 
list of faulty processors in the ith row of the grid and the j th  
element of column contains a pointer to a linked list of faulty 
processors in the j th column of the grid. Thus, each fault is 
inserted once in each array. Since each array has size O(&) 
and there are ( I ( & )  elements to be inserted in the arrays, 
construction of these arrays takes time O( &). With these data 
structures, the regions can easily be found in time O(&) [ 171. 
Sorting the d, values can be performed in time O( &) using a 
linear time sorting algorithm since Id,l I: &. For each value 
of 1, 0 5 C 5 IC 5 fi, the number of unrepairable vertices 
in the best matching with C unmatched spare row vertices can 
be computed in constant time. Consequently, the running time 
of the algorithm is ( I (&) .  The algorithm is summarized in 
Fig. 8. 

Chen er al. [ 3 ]  conjectured that similar polynomial time 
algorithms could be found for OMDP in augmented meshes 
of higher dimensions. We have “disproved” this conjecture 
by showing that the existence of such an algorithm, even for 
three-dimensional meshes, implies that P = NP. The proof 
of this theorem is rather involved and the interested reader is 
referred to [9]. 

C. Experimental Results 

Although the optimal matching problem is NP-complete 
for D ( X )  5 2, experimental results indicate that for low to 
moderate fault frequencies most optimal assignments are in 
fact safe assignments. Therefore, in these cases the polynomial 
time safe matching algorithm for D ( X )  5 2 can be employed 
to find optimal matchings with high probability of success. 
For example, in a simulation on 100 randomly generated arrays 
with 32 primary processors, 16 spare processors, and D ( X )  = 
2, more than 86% of the optimal assignments found were safe 
assignments when at most 10% of the processors were faulty. 
(Optimal assignments were obtained by exhaustive search.) 

\- 

Average 
percentage of 

repairable 
processors 

lo 0 
0 2 4 6 8 10 12 14 16 18 

Percentage of faulty elements 
Fig. 9. 
mesh. 

Optimal, standard, and worst case assignments in the augmented 

Next, we consider the optimal matching algorithm for aug- 
mented meshes. The algorithm was implemented and tested on 
10 x 10 meshes (20 spares) with faulty processors introduced 
at random according to a uniform distribution. The fault 
frequency ranged from 0% to 18% in increments of 2% and 
for each fault frequency 100 meshes were generated. (At fault 
frequency of 20%, none of the meshes could be repaired.) The 
optimal matching algorithm found solutions with as much as 
5 % more repairable processors than those found by standard 
matching and as much as 10% more repairable processors than 
worst case matchings. Since the optimal matching algorithm 
runs in linear time, no additional cost is incurred in obtaining 
optimal assignments. The results are summarized in Fig. 9. 

VI. DEGREE BOUNDS ON SPARE PROCESSORS 

In this section we describe a linear time algorithm for 
finding optimal matchings when D ( Y )  _< 2. We then show 
that this result is tight in the sense that the problem remains 
NP-complete when D ( Y )  = 3. In Section VI-B, experimental 
results are given for the optimal matching algorithm for 
D ( Y )  5 2. 

A. Algorithms and Complexity 

Let G = ( X  U Y. E )  be a bipartite graph with D ( Y )  5 2. 
Without loss of generality, we assume that G is connected, 
since otherwise each connected component can be considered 
independently. 

Lemma 9: Assume that D ( Y )  5 2. If JY I = 1x1 + m, m 2 
0, then there exists S c Y such that IS1 = m and the removal 
of S from G does not disconnect G. Moreover, the set S can 
be found in linear time. 

Proof: Let I = 1x1 and let T be a spanning tree in G. 
We claim that T has at least m leaves in Y. Assume otherwise. 
Then T has m - j leaves in Y ,  for some j 2 1. There are 
2C + m vertices and thus 21 + m - 1 edges in T.  Also, there 
are ( C  + m) - (m - j )  vertices of degree 2 in Y in tree T.  
Thus, there are 

2 [ ( I +  m) - ( m  - j ) ]  + ( m  - j )  = 21 + m + j 



508 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 5. MAY 1995 

edges in T ,  a contradiction. Thus, we conclude that there are 
at least m leaves in Y in tree T.  Any set S of m leaves can 
be removed from T ,  resulting in a subtree T’. The set S can 
be found in linear time by constructing a spanning tree and 

0 
By Lemma 9, if G has at least as many spare vertices as 

primary vertices then it can be reduced to a connected graph 
with exactly the same number of spare vertices as primary 
vertices. Then, by Lemma 3,  a perfect matching of primary 
vertices to spare vertices can be found in this reduced graph 
in linear time. Observe that this matching assigns each faulty 
vertex in F to a unique spare vertex in Y and assigns each 
nonfaulty vertex in N to a unique spare vertex in Y .  Therefore, 
this matching is clearly an optimal matching for G. 

We now turn our attention to the remaining case in which 
IYI < 1x1. By Lemma 2 ,  /YI = 1x1 - 1. Therefore, G must 
be a tree since there are exactly 21x1 - 1 vertices and 21x1 - 2 
edges. An optimal matching can be found in G in linear time 
using the algorithm presented in Section 111. 

Finally, we show that this result is tight in the sense that the 
safe matching problem, and consequently the optimal matching 
problem, remains NP-complete when D ( Y )  = 3. 

then identifying the first 7n. leaves in the tree. 

Theorem 6: SMDP is NP-complete for D ( Y )  = 3. 
Proof: The reduction is again from 3SAT. We transform 

an instance of 3SAT, given by a set of variables U and a set 
of clauses C, to an instance of OMDP with D ( Y )  = 3 as 
follows. For each variable E U which occurs k times in the 
clauses in C,  there are: 

1) k vertices zu,l , . . . , ~ , , k  E F representing the k occur- 
rences of variable U. 

senting the true and false values for each occurrence 
of variable U. 

3) k vertices .zU,1,, . . , z u , k  E N which are “enforcing” 
vertices that are used to ensure that all IC occurrences 
of variable U are assigned the same boolean value. 

2 )  2k vertices Yu,~.T,?Iu,~,F,. . . . Y u , k , T ?  Y u , k , F  E y repre- 

4) 2k edges { ~ u . l ~ ! h . l , T } ~  ( Z u . l , Y u , l , F } , . ~ .  I { z u , k ?  

Y u , k , T ) ,  { z u . k >  Y n , k , F }  E E. 
5 )  2k edges { z u . i , : v u , t ~ ~ }  for 1 5 5 k ,  {zu , i7  Y ~ , ~ + I , F )  

for 1 5 i 5 k - 1, and {zu,kr Y , , ~ , F } .  

In addition, for each clause c E C, where I: contains literals, 
s, t ,  and T ,  there is a vertex z, E N .  Let v denote the variable 
for literal .s and assume s represents the ith occurrence of 
variable v. If s is the unnegated variable 71 then there is an 
edge {zcl y v , i , p }  E E and if s is ~v then there is an edge 
{zcr y v , i , * }  E E. Similarly, edges are added for literals t and 
T.  Observe that in this construction vertices in Y have degree 
at most 3. 

We claim that there is a truth assignment that satisfies all 
the clauses of C iff there is a matching for F in which all 
vertices in N are repairable. We observe that in any matching 
for F, M ,  with no unrepairable vertices, the following property 
holds. For each variable U E U ,  either all edges {xu,il yu , i ,~} ,  
1 5 i 5 k ,  are in M or all edges { ~ ? ~ , i ,  g u , i , ~ } ,  1 5 i 5 k ,  are 
in M ,  where k is the number of occurrences of U in the clauses 
in C. Assume this is not the case. Then there exists a value 
Pi 5 P 5 k, such that { Z u , p t Y u , p , T } :  { z u , p , ! / u , q , F }  E M 
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ring. 

Optimal, standard, and worst case assignments in an augmented 

where q = p + 1 if p < IC and q = 1 if p = k.  However, in 
this case vertex z,,* is not repairable, a contradiction. With 
this fact established, the remainder of the proof is identical to 

U the proof of Theorem 1. 

B. Experimental Results 

The optimal matching algorithm for D ( Y )  5 2 was com- 
pared to standard matchings and worst case matchings on 
a simple ring of primary processors such that each pair of 
neighboring primary processors share a unique spare proces- 
sor. In our experiment, rings with 20 primary processors, and 
thus 20 spare processors, were generated with faulty elements 
introduced at random according to a uniform distribution. 
For each fault frequency, 100 rings were generated with 
faulty processors introduced at random according to a uniform 
distribution. The fault frequency ranged from 0% to 45%. (At 
fault frequency 50% the rings could not be repaired.) The 
experimental results are summarized in Fig. 10. 

VII. AN APPROXIMATION ALGORITHM 
Although the optimal matching problem is NP-complete for 

arbitrary D ( X )  and D ( Y ) ,  we now describe an approximation 
algorithm that can be applied to any architecture and is 
guaranteed to be at least &-optimal. In other words, if 
the number of repairable vertices in an optimal solution is k 
then the approximation algorithm finds a solution in which the 
number of repairable vertices is at least -2- . I C .  Experimental 
results given in Section VII-B suggest that in practice this 
algorithm performs substantially better than indicated by this 
theoretical lower bound. 

D ( X )  

A. The Algorithm 

The approximation algorithm transforms a given instance 
of the optimal matching problem into a weighted matching 
problem as follows. From the given bipartite graph G = 
( X  U Y ,  E )  and set F C X, we construct a weighted bipartite 
graph G’ = ( F  U Y, E’)  where E’ C E is the set of 
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f 

2 .  

X Y X Y 

Average 
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processors 

W Z )  
Fig. 1 I .  
imation algorithm. 

An example of the construction used in the ‘-optimal approx- 

edges in E that are incident to vertices in F.  For each edge 
e = {z,y} E E with .x E F ,  let U), denote the number of 
vertices in N that are adjacent to y. Edge e = {z,y} E E’ 
is assigned weight UI,. An example of this construction is 
illustrated in Fig. 11. 

Theorem 7: Let M be a minimum weight complete match- 
ing in G’ and let k be the number of repairable vertices in an 
optimal matching for G. If matching M is used in G, at least 
& . k vertices are repairable. 

€‘roo$ Let 1 denote the total number of edges in G 
incident to vertices in N .  Let W denote the total weight of 
matching M in G’. Now consider the matching M in G. The 
total number of edges between vertices in N and unmatched 
vertices with respect to M in Y is T - IV. Therefore, at 
least (T - W ) / D ( X )  vertices in N must be adjacent to 
unmatched vertices with respect to M .  Let Mop, be an optimal 
matching in G. Since MO,, is a maximum matching in G’, the 
total weight of Mop, is at least W .  Therefore, in graph G, 
the number of edges between vertices in N and unmatched 
vertices with respect to Mop, in Y is at most T - W .  Thus, 
k 5 1 - W and at least & . k vertices are repairable with 

The complexity of the approximation algorithm is that of 
finding a minimum cost maximum matching. This can be done 
using one of a variety of polynomial time algorithms [20]. 

respect to M .  0 

B. Experimental Results 

In the first experiment, processor arrays with 32 primary 
processors and 16 spare processors and D(X) = 4 were 
generated with connections between primary processors and 
spare processors selected randomly. In each randomly gener- 
ated array, faulty elements were introduced at random with 
fault frequency ranging from 0 to 30% in increments of 5% 
and for each fault frequency value, 100 random arrays were 
generated. For each array, the approximation algorithm was 
used to find an assignment. In addition, the optimal assignment 
was found for each array using an exhaustive search algorithm 
and an assignment was found using standard matching. The 
approximation algorithm found solutions that were at least 
0.94 times the optimal size, whereas the standard matching 
algorithm found solutions as low as 0.75 times optimal. 
Optimal solutions were found using exhaustive search. 

70 
60 
50 

l e  :-opt,mal, I 1 
o Standard assignment 

10 
0 

0 5 10 15 20 25 30 

Percentage of faulty elements 
Fig. 12. &-optimal algorithm versus arbitrary assignment for randomly 
generated arrays with 100 primary processors, 50 spare processors, and 
D ( x )  = 4. 

Fig. 12 gives results for randomly generated arrays with 100 
primary processors and 50 spare processors with D ( X )  = 4. 
The performance of the approximation algorithm is compared 
only to that of the standard matching algorithm, since these 
arrays were too large to be solved optimally by exhaustive 
search. These results indicate that the approximation algorithm 
can find matchings that, in many cases, contain 6 to 14% 
more repairable processors than are obtained by standard 
matching. 

VIII. CONCLUSION 
In this paper we have presented efficient reconfiguration 

algorithms for fault tolerant processor arrays operating in real- 
time environments. Such systems typically alternate between 
a strict mode and a relaxed mode. Although reconfiguration 
must be performed in a purely local fashion during the strict 
mode, global reconfiguration may be performed during the 
relaxed mode to restore the system to a more reliable state. To 
this end, the notations of safe and optimal assignments were 
defined. 

We have shown that the problem of finding safe and 
optimal assignments is, in general, NP-complete. However, 
we have shown that several broad classes of architectures have 
properties that allow us to find safe and optimal assignments 
in polynomial time. First, a linear time algorithm was given 
for finding optimal assignments in topologies that contain 
no cycles altemating between primary processors and spare 
processors. It was observed that several architectures studied 
in the literature have this property. Next, we considered topolo- 
gies in which the primary and spare processors have constant 
degree. A polynomial time safe assignment algorithm was 
given for the case that each primary processor is adjacent to 
at most two spare processors. Similarly, a linear time optimal 
assignment algorithms was given for the case that each spare 
processor is adjacent to at most two primary processors. Again, 
several well-known fault tolerant architectures have these 
properties. Additionally, it was shown that these results are 
tight in the sense that the problems become NP-complete when 
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they are further generalized. Finally, an approximation algo- 
rithm was described that can be applied to any architecture. 
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